
www.manaraa.com

- NOTE TO USERS

This reproduction b the besg &opy avriilable

www.manaraa.com

www.manaraa.com

Handling Large Data Storage in
Synthesis of Multiple FPGA Systems

Amal Khailtash

A Thesis

in

The Department

of

Electricai and Cornputer Engineering

Subrnitted in Partial FuifiUment of the Requirements

for the Degree of Master of Applied Science at

Concordia University

Montreal, Quebec, Canada

September 1999

O Amal Khailtash, 1999

www.manaraa.com

National Library 1*1 of Canada
ûibliitheque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services senrices bibliographiques

395 Wellington Street 395. me Weüingtari
OttawaON KlAON4 OtrawaON K t A W
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sel1
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fkom it
may be printed or othenivise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive pemettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/nlm, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

www.manaraa.com

Handling Large Data Storage in Synthesis of Multiple FFGA Systems

Amal Khailtash

Implementing DSP algonthmç on single or multiple FPGAs has the advantages of

short time to market. non-rec-g engineering, and fast prototyping. Most of today's

FPGAs provide fast aritbmetic operatioas and large enough interna1 RAM storage that

rnakes them very appealing to prototyping large systems, even building DSP applications.

So having a good architecture to begin with is a good asset to engineers.

This thesis hvestigates the issues of handling large data storage in the synthesis of

multiple FPGA systems especially in digital sigdirnage processing applications. In these

applications very simple to complex algonthms are performed on large amounts of data -

an image. An efficient way to store and access these data, the storage of intermediate

variables locaily or on RAM, is presented. The maximum pipeline level is extracted based

on this storage and access scheme. A genenc architecture for execution of arbitrary DSP

algorithm with multiple memory banks is proposed. An lLP fonnuIation for assigning

memory banks to variables is presented. For demonstration purposes, a pipelined cornplex

M has been developed in VHDL and the efficient storage and access order for this

algorithm is presented Also. based on these storagelaccess orders, the generation of

addresses is done using hardware address generators.

www.manaraa.com

Acknowledgments

1 wish to thank my supervisor, Professor Baher S. Haroun, who helped me get

started on this thesis. His insights and guidance have always been to the point and very

helpful in this voyage. He always has bnght ideas and is passionateiy pursuing his goals.

His persistence and knowledge has dways been my inspiration.

1 also thank my other supervisor, Professor Asîm Al-Khaiili, who has been very

patient with me and has always encouraged me to finish t h thesis. He is always listering

and trying to be as helpful as he cm. His knowledge and his expenence in this field is

admiring.

1 dedicate this thesis to my father, my mother, and rny wife. 1 thank my parents for

bearùig me a knowledge-seeking person and raising me right. 1 &O thank my wife for

being patient and encouraging me to finish my thesis.

www.manaraa.com

1.1. Motivation .. 5
............. 1.2. Ourline-....... 6

.. 2 . High-Level Synthesis and FPGA design Flow 8
.. 2.1. Elecuonic Design Automation and Synthesis 8

.. 2.2. Operations Done in High-Level S ynthesis of Architectures IO
... 2.3. FPGA Design Flow 13

3 . Handling Memory in Synthesis of Architectures ma.aaeœameaœammaamaamaaaaaa*aa~aamaaa.ae17

3.1 . Architectural Transformations .. 17
3.2. Memory and Loop Transformations .. 18
3.3. Studying Different Methods .. 19
3.3. Architecture Proposed for Executing DSP Algorithms ... 21
3.5. Exuacting the Maximum Pipeline Level ... 26
3.6. Scheduling the Graph .. 29

4.1. Exhaustive Search of the Solution Space ... 32
3.1.1. Implementation Details ... 34
4.1.2. Results from the Exhaustive Search ... 35

4.2. Formulating the Problem in ILP .. 35
4.2.1. Automatic Generation of the ILP Source for Arbiuary FFT 1 0
4.2.2. Results from the ILP Formulation ... 40

5 . Memory Address Assignment and Generationm............... -42
5.1. Address Assignment 42

... 5.2. Address Generation 43
5.2.1 . Software-bascd Addrtss Gencration 44
5.2.2. Hardware-based Address Generation ... 45

.. 6.1. Which FFï Algorithm Implementation to use? 47
6.2. An Efficient Architecture for a 1024-point Complcx FFI'.. 49
6.3. FFT Signal-flow Graph and Memory Access Pattern ... 50
6.4. Manipulating Memory Access Patterns ... 52

7 . Detailed VHOL Design ea.aaœaaamm~mmammaamaeaaaaemaaamaeaa~~aaaa~mmammmmemmeamaaœammmaaaam~aamamaaaaaam55

.. 7.1. Design of the Data Path and Its Elements 55

www.manaraa.com

7.1.1. Addition Schemes ... 56
7.1.2. Multiplication Sctiemes ... 59

... 7.1.3. FFT Butterfiy Data Path Implementation 63
7.2. Design of the Control Logic .. 67
7.3. Design S ynthesis ... 70

.. 7.3.1 . Synthesis results 71
.. 7.3. Consvucting a Testbench 71

....................................... 7.4.1. Results from the simulation and the FFT benchmarks .-. 72

8.1. Conclusions .. 75
.. 8.2. Suggested Directions to Continue This Work 76

Bibliography ... m.mmwm.mm78

... Useful URL Resources mmmommo85

Appendix ..ww..mm.mmmmm.wmmw....................................~...................~....................... m.owwmmwm87
... . A Memory Bank Assignment Exhaustive Search 87

A . 1 . Exhaustive Search C Source Program for 16-point radix-4 FFT ... 87
A.2. SampIe Output of the Exhaustive Search ... 90

B . Program to Generate the iLP Source File for A r b i u q FFT ... 92
................... B . 1. Program (GILP-FFï.C) for Generating Bank Assignment US , arbitrary FFï 92
.................... B.2. iLP Source (FFï-162.GMS) for 16-point radix-2 M, Two Memory Banks 96

C . Program to Generate FFT Twiddle Factors .. 99
C . 1 . C Source Program TWIDDLE-C .. 99

... C.2. Sample Output of the Program for a 256-point FFT 100
.. . D C Source File Used to Design a Hardware Address Generator 101

D . 1 . C Source File ADDGJ5N.C .. 101
D L Sample #1 .. 106
D.2. Sample #2 .. 106
D.Z. Sample #3 .. 107
D.2. Sample #4 .. 107

D . VHDL Source Files for 1024-point Cornplex FiT .. 108
D.1. FFï Component Hierarchy .. 108
D.2. addrgen-bitrev-vhd .. 108
D.3. addrgen-1inear.vhd .. 109
D.4. butterîly-vhd .. I l 0
D.5. cffii024.vhd ... 112
D.6. conuolIer.vhd ... 118
D.7. mem-bank-vhd ... 123
D.8. mult-vhd .. 124
D.9. reg_pipe.vhd .. 126
D . 10 . recpipe-single.vhd ... 127
D . 1 1 . skew-buffer-vhd 128
D . 12 . twiddle-factor.vhd ...-................... 129

... D. 13 . Testbench "cfftl024-tb.vhd" 131

www.manaraa.com

List of Figures
Figure 1 . A reconfigurable board 3
Figure 2 . Tasks in a high-level synthesis tool,. ,... . 1 2
Figure 3 . FPGA design flow ,., ... 15
Figure 4 . Architectural transformations_ 1 7
Figure 5 . Proposed architecture ... 22
Figure 6 . &point, radix 2. in-place FFï (Cooley-Tukey) ... 23
Figure 7 . A number of folded implementations of the FFI'....................................... 24
Figure 8 . Sequence of operations in execution of the graph 25
Figure 9 . Sequence of operations, showing the parallelism achieved - 2 5
Figure 10 . Different scan orden for the sample FFï graph27
Figure 1 1 . Retiming and pipefinhg iIlustrated ... 28
Figure 12 . Scheduled FFT with two-stage pipehed butteffly core and variable lifetirnes.30
Figure 1 3 . Radix-4 I 6-point FFT ... -31
Figure 14 . Pictorial representation of a symbol ... 33
Figure 15 . Software-based (microcontroller) address generator ,.. A 4
Figure 16 . Simple address generator -46
Figure 1 7 . Decimation-in-time and decimation-in-frequency butterflies -48
Figure 18 . Proposed architecture for complex FFT 3 0
Figure 19 . Cooley-Tukey FFï access patterns ... 5 1
Figure 20 . Modified accesses for 4 & 8-point Cooley-Tukey FFI' (two memory banks) 3 3

...................... Figure 2 1 . Final W architecture with skew buffer registers ... - 3 4
Figure 22 . A few different adder structures .. -37
Figure 23 . Areas for Werent adder archi tecfure .. -58
Figure 24 . Speed for different adder architectures ... 59

.................... Figure 25 Different multiplication architectures .. 61
Figure 26 . DiF butterfly engine data path details -64
Figure 27 . Skew buffer detailed schematic ... -65

.................. Figure 28 . Top-level module for 1024-point cornplex FFï and its UO timing 68
Figure 29 . Simplified state diagram of the conmller ... 70
Figure 30 . Basic simulation testbench ... 72
Figure 3 1 . FFT benchmarks resule (chart) 74

www.manaraa.com

.......... Table 1 . The set of inpudoutput connections to the inputs & outputs the buttedy 26
Table 2 . Results for radix4 . 16-point FFï and two memory banks (exhaustive search) ... 35
Table 3 . Sample assignments of symbols to iterations and nodes' outputs -36
Table 4 . Sample assignments of symbols to iterations and nodes' inputs 37
Table 5 . Constraints used for the 16-point FFI' memory bank assignment 38
Table 6 . Base TotalBanks equivalent of symbols inl6-point FFï and 3 memory banks ... -39

................................. Table 7 . Resulu for radix-4. ldpoint EFï and two memory banks 40
............................... Table 8 . ResuIts for radix4 . 16-point FFï and three rnernory banks 41

................................. Table 9 . Results for radix-8, 64-point and two memory banks 41
.. Table 10 . FFT benchmark resuits (tabulated) 73

www.manaraa.com

List of Acronyms
ALAP
ALU
ASAP
ASIC
ATPG
CAD
CAM
CFFT
CFG
CDFG
CIA
CLA
CLB
COSA
CPA
CSA
CSKA
CSLA
DA
DIF
DIT
DFG
DFT
DFT
DSP
EDA
EDIF
FA
FCFS
FIFO
m
FPGA
FSM
FU
GAG
KA
HDL
IP
ILP
LUT
MTTM
MPEG

As Late As Possible (Scheduling)
Anthmetic Logic Unit
As Som As Possible (Scheduling)
Application Specifïc Integrated Circuit
Automatic Test Pattern Generator
Cornputer-Aided Design
Content-Adàressable Memory
Complex Fast Fourier Transform
Control Fiow Graph
Control Data Flow Graph
Carry-lncrement Adder
Carry-Lookahead Adder
Configurable Logic Block
Conditional-S um Adder
Carry-Propagate Adder
Carry-Save Adder
Carry-S kip Adder
Carry-Selec t Adder
Distnbuted Aritbmetic
Discrete In Time
Discrete In Frequency
Data Fiow Graph
Design For Testability
Discrete Fourier Transform
Digital Signal Processing
Electronics Design Automation
Electronic Design Interchange Format
Full Adder
First Corne, First Served
Fit In, First Out
Fast Fourier Transform
Field Rogrammable Gate Anay
Finite State Machine
Functional Unit
Genenc Address Generator
Half Adder
Hardware Description Language
Inteiiectual Property
Integer Linear Programming
Lookup Table
Mean Time To Market
Moving Pictures Experts Group

www.manaraa.com

MUX
NRE
PCI
PDG
PPA
PPA-BK
PPA-KS
PPA-SK
RAM
RCA
ROM
RTL
SDF
SFG
SOC
VHDL

Muitiplexer
Non-Recurring Engineering
Penpheral Component Intercomect
Polyhedral Dependence Graph
Parallel-Prefix Adder
Parallel-Refix Adder Brent-Kung impiementation
Parallel-Prefix Adder Kogge-Stone implementation
Parailel-Prefix Adder S kansky implementation
Random Access Memory
RippIe-Carry Adder
Read Only Memory
Register Transfer Level
Standard Delay Format
Signal Flow Graph
System On a Chip
VSHIC (Very Hi@-Speed Integrated Circuit)
Laaguage
Very Large Instruction Word

High-level Descript ion

www.manaraa.com

Chapter 1

1. Introduction
With today's uicreasing need for processuig power in the telecommunications and

other industries, new techniques are used <O accelerate the design turn around and to

decrease the area/power consumption of the system, yet increase the system performance.

New high-level synthesis toois should consider rnany factors and try to manipulate the

system definition based on the designer's specification at a higher Ievel of abstraction

before going down to the RTL' code optimization and the h a 1 physical implernentations.

The need for more architectural enhancements, either manually or by a high-Ievel

architectural synthesis tool is more essential and evident.

New techniques based on hardwardsoftware codesign. which has recently corne to

the attention of many researchers [l], [2], [3], [4], [5] , [6] and the industry, try to merge

all aspects of system design in one unified environment that can tackle the problem and do

optimizations at ai l levels and across multiple doxnains. Codesign took d o w a designer to

specify an algorithm at a bigh level of abstraction. The tool does a lot of optimizations and

finaily partitions the design into a software module that would reside on a general purpose

processor and another module that would go into a dedicated logic such as multiple

FPGA' or ASIC~.

' Register Transfer Level

' Field Programmable Gate A m y

www.manaraa.com

With today's million-gate FPGAs, one can put more functional units like

multiplier-accumulator blocks in paralle1 and achieve a higher performance. It is aiso

possible to find a vast variety of sofi and hard cores ranging kom dinerent DSP

dgorithms, microprocessors, PCI* interface cores, to large cores like MPEG~

encoderfdecoder chips, network controuer chips, and communications systems building

blocks. There are many design houses and independent designers that work only on

creating IP7 cores, which corne complete with testbenches and documentation and

sometimes even the source codes, using the latest EDA' tools.

FPGA devices are ideal prototyping tools for small to medium size systems. The

MTTM~ for systems implemented using FPGAs is small. The NRE" associated with the

system is ako Iow compared to an ASIC because of the fewer number of steps needed to

arrive at the final design and the chance to enhance previous designs faster and try

dflerent designs in less Ume. FPGAs also have the advantage of reconfigurability. The

concept of on-the-fly reconûgurable boards is not new. In fact there have k e n rnany

papers on th& subject 171. There are also commercial produccs that make use of this

technique and the reconfigurability of the SRAM based FPGAs. One such product is the

MEGA-OPS system that has multiple FPGAs and three memory banks on a single board.

Application Specific Integrated Circuit

Digitai Signal Processing

Peripheral Component Interconnect

Moving Picmm Experts Group

IntelIecnial Properiy

' EIecLronic Design Automation

Mean Time To Market
10 Non-Recumng Engineering

www.manaraa.com

Their goal is to irnplement hardware accelerator boards that speed up the computations on

a persona! compter. 'I'hey use a C-style language to specify the algorithm and a compiler

that compiles it to an intermediate form and fmally to a form suitable to be downloaded

into the FPGAs on the board- Once the FPGAs are configured the board can execute at a

much faster speed and the speed-up gained is much more than the software only

implementation of the algorithm It also has the flexibility of the software; Le., one can

change the algorithm and download a new one into the board and use the system for a

difTeren t purpose.

FFT Bitstrearn 4 - FFT Processor

Convolution Bitstrearn - Convolver

MPEG-2 encode/decode - MPEG-2
Ri rctr~arn encoderldecoder

Figure 1. A reconfigurable board

One can also achieve a higher performance by parallel implementation of

algorithms on an FPGA or dedicated iogic than implementing it on a generd purpose DSP

processor. This is true if one can convert a floating point algorithm to its hxed-point

counterpart with reasonable resolution, FPGAs codd have advantages over general

purpose DSP processors. Otherwise fioating-point operations are better done on floatiug-

point DSP processors. Currently, the DSP processors have a few (usuaily one or two)

built-in muitiplier-accumulator units that are the essentiai part of most digitaI signal

processing algorithms. New breeds of architectures fkom Texas Ins tnrments, Analog

www.manaraa.com

Devices. Lucent Technologies and Motoroh are using VL,IW1' processors with multiple

data pipelines to improve the performance and throughput of the processor for these

applications.

Most signal processing applications, especially those in the field of image

processing, need to access large amounts of data that are normally stored in RAM. The

way in which this access is done highly affects the W architecture. Atso the way one sets

the consmaints on the synthesis tool ai3ects the performance and area of the final

architecture obtained. The goal is to increase the memory bandwidth thus increasing the

performance of the system, but this rnay add to the total area. which may not be very

desirable in aii applications. Therefore there is a trade-off between the area and the

performance of the system The arealperformance factors also S e c t the final power

consumption of the system.

The purpose of this work is to study a system architecture with multiple memory

blocks that can be accessed simultaneously by the processing kemel, which win run the

algonthrn These memory blocks d o w the exploitation of pardiehm that rnay inmase

the throughput of the system Adding more memory blocks and more pardel data paths

rnay not be opthai for dinerent applications. More paralleihm in an algorithm also puts

constraints on the mmory subsystem. One has to provide more &ta in parailel for

alleviating the bottienecks and not to starve the pipelines of the computing engine.

--

" Very Large Instruction Word

www.manaraa.com

1.1. Motivation
High-level architectural synthesis tools have come a long way and have tackled

different aspects of a design. There have been many studies on synthesizing and

automathg the generation of optimal data paths and control Iogic to execute a specific

algorithm In recent years, with advances in communications technology and the advent of

CO mplex DS P systems, arc hitecturd transformations and enhaucerneats have becorne more

important than ever. These optimizations tend to ignore the effects of aux ïby memory

used in these algorithms. The way the variables are stored in memory and how they are

accessed during the execution of the algorithm c m dictate how the control structures

work and can also affect the data path itself. The million gate era for FPGAs has arrived

and as mors and more functionality and architectural improvernents appear in new FPGAs,

the dream of millions of gates SOC" becomes a reality. But without proper took and

knowledge of the algorithm and different architectures. these devices may not be utilized

as e fficien tly as possible. Architectural decisions and enhancement techniques are equally

important to both FPGA and ASIC designs, but they are more important for ASIC flow

with its associated NRE cost and time spent during the design.

This work emphasizes the importance of paying attention to the memory

subsystem during architectural synthesis and enhancements that can be achieved by proper

selection of the number of mernory banks and scheduling of the readlwrite operations.

Traditional techniques are reviewed and dinerent views on the subject are explored.

This study tries to find answers, techniques, formulations, heuristics and arrive at a

novel architecture for a multiple memory system The main issues are choosing the right

www.manaraa.com

number of memory banks for a specifïc algorithm, correct scheduie for the rnemory

transactions and sketching the final design.

The techniques presented will assist in arriving at a better architecture with

multiple memory banks that cm be used for running different DSP algonthms. The

architecture presented is simple yet effective. Later chapters will show this sirnplicity and

how it rnakes a design based on uùs architecture to run much faster than others.

1.2. Outline
Chapter 2 s tms with explainhg the basics of high-level synthesis, especially

architectural synthesis. The fundamental processes involved in arriving at an optimal

architecture that can be used to run a variety of DSP algorithms are explained. The

methods descnid are independent of the target technology used, whether it be ASIC or

FPGA. The emphasis of the following chapters would be on FPGAs.

Chapter 3 concentrates on discussing different methods and issues found in papers

dealing with architectural synthesis of aigorithms that use memory to carry out their task.

M e r showing different architectural transformations, a generic architecture for running

DSP algorithrns is proposed. A method to find the maximum pipeline level for various

accesses to the scratch-pad (temporary) memory used for storage of intermediate and tiaal

variables is presented. This chapter ends by showing the effects of retiming and pipelining

on the variable Me times and thus the memory used. A schedule for an FFï algorithm wiU

dso be shown.

'' Systern On a Chip

6

www.manaraa.com

In chapter 4 a novel approach for hding the optimum number of memory banks

for a specifïc algorithm is presented. First, an exhaustive search scheme that has very big

run times is shown, and then the same problem is fonnukted using the hteger Linear

Programming. From this chapter on, the FFI' exampb algorithm is used throughout the

work,

Chapter 5 goes over dinerent techniques in generating addresses for a specinc

aigorithm and finally shows a method to build a hardware address generator.

Chapter 6 uses the methods developed in the previous chapters to irnplement an

FFT hardware engine.

Chapter 7 presents the detaüed VHDL design of a complex FFT and shows the

design challenges and issues. Different aspects of VHDL design of the data path and

control logic for this optimized DSP algorithm is shown.

Chapter 8 gives future directions and brings up issues to be resolved in dealulg

with memory in architectural synthesis.

www.manaraa.com

Chapter 2

2. High-Level Synthesis and FPGA design Flow
There are many steps involved in the high-level synthesis of architectures [SI.

Foiiowed by the architectural synthesis is the actual logic synthesis or silicon compilation.

The results of architectural synthesis affects the outcome of the final design after logic

synthesis; i.e., the design decisions made and tradeoffs used in choosing the architecture

changes the aredspeed grades of the result.

Nowadays many synthesis and EDA software companies' attentions are focused on

rnaking synthesis tools more aware of and capable of making architectural decisions to

improve overall system performance, power and area.

2.1. EIectronic Design Automation and Synthesis
The electronic industry is a very fast. dyoamic filed that is also very competitive.

To reduce the amount of thne spent designing a systern, design automation and synthesis

are introduced. Electmnic design automation deals with rnakuig most of the design steps

automatic and faster to cornplete. It covers all aspects of the design i?om the design entry

to implementation and W y design veriîïcation. Design automation allows the designer to

try out dinerent designs and corne up with a good trade-off in the shortest amount of tirne.

This lets the designer to arrive at the most optimum design needed for a specinc

application.

www.manaraa.com

Design entry could be schematic, block diagram, state diagram and flow charts or

other means of specifjhg the system. Design implementation EDA tools cover the

synthesis, partitioning, placement and routing of the design. Examples of the design

verifkation tools are high-level and gate-level simulators and automatic test bench

generators.

Synthesis is the action of arrivïng at a circuit at the finest grain after specifying the

system at a higher level of abstraction. Synthesis is usuafly divided in three different

categories:

1. High-level synthesis

2. Logic Synthesis

3. Layout and physical synthesis

The high-level synthesis transforms the specification of a design, which is at the

highest level and specines the behavior of the system, to a structural netlist of

intercomected components and RTL logic. This is explahed in more detail in the next

section.

Logic synthesis deals with converthg the structural RTL specitication of the

design to an optimal (simplIified) combinatorid and sequential Iogic mapped to a speci6ic

technology and ceil library. Logic synthesis is not covered in this work (refer to [IO]).

Layout and physical synthesis converts the mapped structural design into the exact

physical geometry or layout of the design. This includes the actual placement and routing

of the components.

www.manaraa.com

2.2. Operations Done in High-LeveS Synthesis of Architectures
The f ~ s t step in high-level synthesis is the compilation of the source description,

whether it be an HDL or other high-level representation of an algorithm to an intermediate

format. This intemediate fonnat is rransformed into a more suitable representation for

high-level synthesis that is usually a Control Data Flow Graph (CDFG}. A Control Data

Flow Graph is referred to two directed graphs called a Control Flow Graph (CFG) and a

Data Row Graph (DFG). A CFG contains the flow of control in the original specification

with nodes k ing the operation and the edges king the dependencies of operations. The

DFG contains the flow of information fÏom one operational unit to the other. These

opentions usuaily encompass compiler-like and hardware-specific transformations.

Some of the transformations at this stage include: converting more complex

operations to sirnpler ones with the same functionality, increasing the parailelkm in the

operations, and reducing the number of data flow levels.

Afier a CDFG is extracted Erom the high-level language specification, fiom this

CDFG, the control circuitry and the data path are derived.

The main tasks in high-level synthesis that should be done to derive an architecture

from a system speci£ïca<ions are: Ailocation. Bindhg and Scheduling. M e r these three

steps the design is written out in a structural RTL language and passed to logic synthesis.

The three main steps in high-level synthesis are explained briefly.

Allocation is the assignment of dinerent functional elements for the systern,

including Functionai Units (FU) - adders, multipliers, ALUs, etc.- Registers, Register

Fies, RAMs, Interconnections, Busses, MUXes, and Bus Drivers. The selection of

www.manaraa.com

different hnctional units is based on the constrains passed to the synthesis tool, The

allocation phase tries to select operations that seem to satisfy the timing consuaint by

Iooking at the DFG.

Binding is the assignment of operations to functional units, data transfers to

busses, multiplexers and interconnections, variables to registers, register files and memory

blocks, addresses to memory locations. Bïnding tries to optimize the sharing of hardware

resources. Operations done at different cycIes can share the same functional unit, variables

that are not dive (needed) at the same time can share the same register or memory

location, and data transfers that do not occur at the same time can share the same path

(bus or multiplexer).

Scheduling is the assigrunent of data transfers, lifetimes. operations to clock cycles

in a synchronous system Scheduling tries to optimize the number of clock cycles needed

ro finish the algorithm given the consîraint on the hardware resources and the number of

clock cycles. This operation takes into account the control relauonships specifïed in the

CFG and also should consider the data dependencies specified in the DFG. Scheduling

ais0 deals with chnining of operations and multi-cycle operations.

These three tasks and their relationships is shown in Figure 2.

www.manaraa.com

Functiod Units 0
Registers, Rcgisîer Fies, RAMs

ïntercohl~~tioas, Brisses
Mmes, Bus Drivers

Operations + FUS
Data + Busses,

Transfers Interconaections
Variables + Regisfers, Mcmory

Blocks
Addresses + Memory Locations

Data Transfers, Lire Thes
and Operatioas

1
1

Cl& Cycles

Figure 2- T ' in a high-level synthesis tool

In a synthesis tool, these tasks are done to obtain an architecture from

specification. The starting point for these t a s h is usually Ailocation. But there is a cycle

arnong these three tasks that should be done a number of times to arrive at the desirable

architecture based on the constraints put on the synthesis tool by user specification. Some

synthesis tools break this cycle at some point or even do two or three of theses tasks

together. The complexity of the tool increases as these tasks are done together, but the

architecture obtahed is closer to the optimal architecture because doing the processes

together gives global visibility of the system to the tool.

There are different scheduling techniques. A few of them are:

1. Fîrst come, h s t served (FCFS) scheduling. This looks ody at data dependencies

and tries to schedule operations h m the fmt to the last one whichever come first.

2. ASAP (as soon as possible) scheduling, by which. operations are scheduled as

early as possible considering their dependencies.

www.manaraa.com

3. ALAP (as Iate as possible) scheduling, by which, operations are scheduled at the

latest possible maximum time ailowed-

4. Criticai path scheduling, also called mobility scheduiing, schedules operations

based on their mobilities. Mobility of an operation is the ciifference between its ALAP and

A S M schedule.

5. Lifetime scheduiing tries to h d a good schedule by minimiung the number of

registers.

O ther scheduling techniques are "Force Direc ted Sc heduluig", "List Sc heduling",

and "Look-ahead Scheduiing".

In this study, work on binding variables to memory blocks and addresses to

memory locations are undertaken. Other tasks are also reviewed as the finai architecture is

derîved.

2-3. FPGA Design Flow
To arrive at the final programmuig bitstream for the FPGAs, a designer starts by

system specification and then capturing the design with a design entry tool. Design enuy

can be pure schematics, pure HDL'~ code (~ H D ~ ~ ~ ~ e r i l o ~) , or mixed schematics and

HDL. Foliowing this is a simulation step, in whicfi the fiinctionality of the design is

verified. After the verification step, is the actual synthesis of the HDL code and design

optimization The input to this step is the designer's timing and area constraints. Tbe first

step in the design implernentation, is the HDL synthesis and mapping the design to the

" Hardware Description Language

'' VHSIC (Very High-Speed Integrated Circuit) Hardware Description h g u a g c

www.manaraa.com

target device (technology mapping). Then the mapped design is flattened and al l the

elements are piaced considering the timing and placement constraints. M e r placement, is

the automatic constraint-driven routing of the nets in the design and their interconnects. At

the end of this step, the configuration bitstream for the FPGA is produced.

To v e w the fiinctionality at this stage, one must back-annotate the actual delays

korn the placed and routed design back to the flattened HDL netlist and do a timing or

back-annotated sirnuIation. The result of this simulation is to be compared with the result

of the functional simulation. If the two resu1ts are within the allowable range of design

specifications, the design cycle is complete. The complete flow is shown in Figure 3.

The ASIC design flow is very si& to the FPGA flow with a few more additionai

steps. There could be an RTL floor-planning before the actual synthesis to improve the

area/performance. After the synthesis, which takes user constraints and the target

technology's ceii libraries, is the final floor planning and placement of the modules. For

better design testabW. a DF~? scan chah insertion step is done in which the IEEE 1149

boundary scan chah logic is inserted at the WO boundaries.

An Automatic Test Pattern Generator (ATPG) module and a signature analyzer

module could also be placed on chip to do self test and sanity check on the circuit.

15 Design For Tcstabiiity

www.manaraa.com

Design Entry 1

pl Extractor /
Functional
Simulation

S ynthesis i
I Technolou

Mapping

Place and ril

B it-stream
Generation

< End

Route _I

Pass? 9

Figure 3. FPGA designflow

b

Gate-level
(Timing)

Simulation

There could be an additional power optimization of the system in which some

techniques are used to reduce the toggling rate of fip-flops thus reducïng the power

consumption of the system.

4 l
Back-annotated

HDL Netlist
Generator

www.manaraa.com

Afier the final routing is the delay extraction and generation of the back-annotated

netlist that is usually in the EDIF'~ format or VHDUVerilog netiist with associated SDF".

A comprehensive simulation is doue at this stage and if there was a problem at this stage,

the preceding steps could be repeated. M e r the nnal confirmation that the design satisfies

the design specifications, the rnasks are generated and the chip layout is done. The masks

are sent to the fabrication facilities where the chip is fabncated and packaged.

-

16 Elecuonic Design Interchange Format

l7 Standard Delay Format

www.manaraa.com

Chapter 3

3. Handling Memory in Synthesis of Architectures
In this chapter, dinerent architectural transformations related to the synthesis are

expiored and then differenc memory access (loop) traflsfonnations are presented. Then

some of the published techniques in dealing with synthesis of DSP algorithms that make

use of memory as temporary storage are reviewed.

3.1. Architectural Transformations
There are very simple architecturai transformatioos that can improve area andfor

performance of a specific algorithm Some of these transformations are results Born

compiler technology [9] applied to hardware synthesis [IO], [Il] , [12].

Figure 4. Architecrural transfonnarions.

17

www.manaraa.com

As c m be seen in Figure 4, one can see three different simple transformations,

which improve the overaii system arealperformance by reducing the number of operatiord

units and their associated delay.

The 6rst transformation is the use of other fiinctionally equivalent, more

aredspeed efficient operational units in place of more costly ones. An example would be

using shifis instead of multiplication by a constant power of two number. This improves

both area, speed and power consumption of the system.

The second transformation is using the association property of operations to merge

and group multiple operations. This improves delay and therefore system performance.

The third transformation is distribution or what is usually called resource-sharing.

And that is to factor and use the cornmon part of multiple operations. This improves the

resulting area and power consumption.

3.2. Memory and Loop Transformations
In section 3.5, the reader will see how arrangement of variables in memory

(storage order) and accesses to those variables (access order) c m &ect the pipeline Iength

and the variable lifetirnes in memory. There are other ways to reduce the memory trafic

(reads andor writes) by using loop transformations.

One can observe the foliowing different methods mentioned in [13]:

1. Loop-invariant removal tries to move the parts of the loop body that do not

depend on the loop index to outside of the loop body.

www.manaraa.com

2. Load-after-load optimization removes the second load fiom the loop body if the

second access is to the sarne location as the fust and the sequence of operations have not

changed the value of the variable accessed.

3. Load-afier-store optimization removes load if t k r e were no other store

operations to the same memory location and the intemal variable is used instead of another

memory access.

To improve the performance of compter systems and algorithrns, one can increase

the number of memory banks that provide data to a specific architecture and keep its

interna1 pipelines fully utilized. Usually data interleaving is used for the storage of

information in these multiple memory, parailel systems. But this may resuk in memory

access contention and pipeline stails. There are also other dynamic methods to increasing

the performance of multiple memory, parailel systems by using d y n d c storage schemes

and address transformations [141, [15], [16].

3.3. Studying Different Methods
In this study, dinerent approaches taken in different areas of computing

applications have been looked at. One such approach is in the implementation of data

s tmct ures and rnemory management strategy using windo w analysis in the Cathedral-II

system [17]. It analyzes the algorithm and for a given number of memory ports reduces the

total number of storage locations needed to a near muiimum First, the minimum number

of locations that store eacb data structure separately in chunks of contiguous RAM

locations, caiied pages, is found. Next, pages can share the sarne physical memory

locations if their contents is not dive simultaneously. It was also observed that storage

www.manaraa.com

order and access order of a data structure in rnemory, changes the arnount of storage

requirements. In this system, which is based on Iifetime analysis, variables with disjoint

lifetimes can share the same rnemory location thus reducing the memory size needed. The

''window of an array" is that section of the array that should be dive in rnemory in order

for the algorithm to run properly. With the change in the storage and access order of an

array the window of the array changes and thus changing the amount of local memory

requîred in the architecture.

Another approach taken, is using loop and control flow transformations using

polyhedral dependence graphs (PDG) [18] and finding an ordering vector for optimal

memory access having the bandwidth constraint as the maximum number of simultaneous

memory accesses at any time point. Their approach is that ail the intemediate variables

that are sure to be consumed directly after their production do not have to be stored in

background memory. One important point is that memory size is related to the maximum

number of signal instances to be stored at any point of t h e for a given ordering of

operations.

Another interesthg paper is in the field of high-level-language compilers for

parallel machines and the subject of loop transformations to increase parallelism. In this

paper 1191, a number of transformations are proposed to increase parallelism. The object

of this paper is parailel computers that have 6xed architecture and is dinerent fiom what

has to be done for this work; Le.; compilation for an architecture that is unknown.

In another paper [2O]. a technique using Mathematics of Arrays and the w (PSI)

calculus is used to generate addresses for data transfers that require less data tramfers

www.manaraa.com

than more rraditional algonthms. But again this is targeted for general purpose processors

with fixed architectures and single memory port that is not suitable for the purpose of this

work.

In [2 11 a coprocessor engine using FPGAs for a gewral purpose DSP processor is

shown that helps in the computation of a 3x3 convolution on a 2-D image data. They

extract the winciow, or the active variables needed to compute one 3x3 convolution sum,

fYom the algorithm and with the aid of FIFOs they supply enough data for the architecture

implemented in the FPGA to compute the rest of the convolution.

It is known that how the data is stored in rnemory and how it is accessed can affect

the memory requirements of the final architecture. In [22], 1233, 1241, it is s h o w that

arranging the data in multiple memory banks for a pardel machine can change the

throughput of the system So there is a trade-off in the number of memory ports (blocks)

and the arnount of local storage inside an architecture for different algorithms.

3.4. Architecture Proposed for Execufing DSP Algorithms
From the study of ail these papers the following design is proposed (Figure 5) that

is suitable to implement a nurnber of different DSP algorithms with different degrees of

parailelism. It is assumed that the algorithm is originally specified with some kind of loop

structure and the imer core of the loop is speciaed as a signal flow graph. The memory

blocks could be implemented as discrete memory or as embedded mernories inside FPGA,

whic h are abundant in today ' s FPGA architectures.

www.manaraa.com

Figure S. Proposed architecture

To dustrate this, an &point, radix 2, in-place FFT'~ based on this design is chosen

for implementation (refer to [45] for detailed explanation of FFï). In this multiple port

memory design, it is desirable to be able to pass data fiom each of rnernory blocks to the

inputs of the data path kernel which is implementîng the b e r core of the loop of the

signal flow graph. And it should also be possible to store the outputs o f the data path to

any or ail of the memory blocks. This is the reason for the memory port switch-box unit at

the inputs and outputs of the data path to the memory blocks. This is derived fiom the fact

that in many of the signal flow graph representation of algorithms, if the signal flow graph

is repetitive (composed of similar operations), one can fold the graph and only implement

the repetitive part and forward the proper data to the inputs of this folded graph. This c m

be seen in the signai flow graph of the FFT example; as in Figure 6.

Fast Fourier Transform

www.manaraa.com

iEach input symbol is i
jassumed to be a complex :
inurnber with real and I
Iirnaginary parts.

50 the bunefly has four :
!inputs.

\ Each Butterfly Implementation Detail

Figure 6.8-point. rad& 2. in-place FEï(Coo1ey-Tukey)

Assumuig. ail the memory accesses have been assigned to the variables that should

be s tored in memory, with a specific computation order, one should schedule the reads and

writes of these variables and also bind them to a specific memory port.

To do thû, the b t task is to assume a computation order. For this purpose

consider the fuily folded graph of the FFT exarnple; as in Figure 7.

www.manaraa.com

\ FulIy Folded Croph

Figure 7. A number of folded implemenrarions of rhe FFï

The computation order considered; having Figure 6 in rnind, is a column-wise scan

of the signai flow graph; i.e., the top-left butterfly is computed first, then the second top-

left butterfly, then the third-top, and so on. For each step of the computation an iteration

count is assigned; Le., the k s t butterfly is assigned 0, the second 1, and so on. To

continue the process, ailocation, scheduiing, and binding for the butterfly graph is done

and the number of cycles needed to finish the operations is found. Then considering the

architecture proposed in Figure 5, one should do the foilowing operations one afier

another. In the f k t iteration of the loop, the necessary variables are supplied to the correct

inputs of the butterfly (the data-path core in Figure S), then it is time for the computation

cycle of the buttertly itself, and then the output results are written to one or a number of

memory blocks.

The memory switch-box is responsibIe to route the correct input to the data path

and the result to each memory block. These series of operations can be seen in Figure 8.

www.manaraa.com

Iteration O

-- - -- - --

Figure 8. Sequence of operurions in execurion of rhe gr&

The write operations of each iteration can be done with the read operations of the

next itemtion assurning there is no conaict in the memory organization; Le.. there can be

sirnultaneous reads and writes, and &O the variable produced is only consumed at least

two iterations apart. If the variable is going to be used in the next iteration it can be fed

back to the graph with a single delay or a recursive edge instead of king stored on the

external memory to the data-path.

If the inner core graph cycle time is comparably longer than the cycle tirnes of read

and wnte operations, the graph cornpuration of the third iteration can also be done in

parailel with the read of the second, and write of the first iteration. The resulting order of

operations can be seen in Figure 9.

- - - - --

Figure 9. Sequence of operariotts. showtirg rhe paroIIeILrm achicved.

www.manaraa.com

3.5. Extracthg the Maximum Pipeline Leve!
Now the weights of each edge of the folded graph are extraaed. Weights are the

delays that should be put at the output of one iteration so that the correct value is passed

to the iteration that needs this value. For example, if a value is produceci at iteration 5 and

is used at iteration 9. there should be a delay of 3 (z3) at the output or an edge with

weight 3. Figure 10 shows different order of operations needed CO cornpute the in

Figure 6. In ail cases the precedence of operations should be preserved to guarantee the

correct computation. These different orderings result in dinerent number of delays needed

for each variable, in another word, there will be less number of memory locations needed

to keep the variables in between the iterations depending on this order.

With the labeling of the edges and inputs of the buttedy in Figure 9, the foliowing

tables tabulate the number of Z ' s needed on each edge based on different computation

order. Basically, if the delay is more than one, the variable is stored in memory, otherwise

it is saved in a register that is represented by a recursive edge. These registers d o w

fuaher pipelining of the core graph and data-path, thus reducing the cycle time.

Table 1 . The ser of inpur/ou~pur connections ro the inputs & outpuis the burterfly

Fust delays for column-wise scan is extracted, and then the same is done for other

types of scan.

www.manaraa.com

Figure 10. Differenr scan orders for rhe sample F R gruph

www.manaraa.com

By studying these scan orders it is possible to further pipeline the data-path. If the

number of Z'S are more than one in all iterations. the number of Z'S can be reduced by

one and that Z' be moved inside the data-path to use it as pipeline register. This will

drastically decrease the cycle time of the core data-path and the throughput of the system

is increased by parailehg more operations.

- -- --

Figure I I . Retiming and pipelining ilfustrated

Now consider the data-path core shown in Figure 11 with two of the recursive

edges with weights 2 and 3; shown as black-filled boxes and ako assume that it is possible

to move in as rnany Z'S. By moving the Z 'S inside the data-path, the execution tirne of the

www.manaraa.com

core is decreased. But it is not possible to move al l of the Z'S in, othenvise the iterations'

interdependency WU be lost and the correct algorithm would not be iinplemented. This is

because this data path is denved by folding the original signal flow graph. The only way to

preserve the algorithm correctness is only to move in one les than the minimum number

of 2% at each iteration; Le., to use the minimum of the weights at each column.

3.6. Scheduling the Graph
Next the FFT exampb is investigated and the reads and the writes to the e x t d

memory for the fïrsst type of scan (column-wise) shown in Figure 10 is extracted With the

previous discussions in muid, only one Z' can be moved from each edge in and used as

pipeline register inside the data path. Having done this, the operations (reads and wrïtes as

in Figure 12) can be scheduled. It is assumed that, it is possible to have two simultaneous

reads and two simultaneous writes; either by having a dual-port memory architecture or by

having two memory subsystems.

This m e r reduces the cycle time of the execution of the whole algorithm. But if

this is much too expensive, the reads and writes could be scheduled sequentially one afier

another.

www.manaraa.com

v - lwrite = 1 cycle)

Figure 12. Scheduled FFT wirh nvo-stage pipelined butrerjly core and variable lifefimes

From this discussion, it can be seen that pipelullng the core shortens the total

execution cycle of the algorithm Higher levels of pipelùiing are also possible by

introducing what is cded a no-op node to the graph on edges that have the lest number

of 2%. By introducing new nodes hto the graph, the number of Z'S that can be mved

inside the core to be used as pipelined registers could be increased. Higher levels of

pipelining allow to remove the dependency among input, output operations and also the

core. This simplifies the task of mernory bank assignment because it is no longer needed to

know the schedule of the operations in the graph and al l the operations, including read and

wnte to the memory, having the mobüity of the whole execution cycle.

www.manaraa.com

Chapter 4

4. Memory Bank Assignment
In this chapter, explanation is given on how to assign a rnemory bank number to

the edges of the graph so that the memory bank usage is balanced and aiso on how to

simphfy and reduce the Iogic needed in the controiier of the final architecture. The

example graph used in this chapter is a radix-4 16-point FFï (refer to [45] for detailed

explanation of FFI'), assuming having oniy two memory banks. The graph is shown in

Figure 13.

-- -

Figure 13. Radù-4 16-poinr FFT

An in-place storage scheme is assumed; Le., the nnal result of the FFT is assumed

to be stored in the same place as the original input data, but the difference with the in-

place storage is that the intermediate results wili not be stored in the same place as the

www.manaraa.com

input data. Therefore, in the p p h of Figure 13 the output edges are assumed to be

wrapped around and connected to the corresponding inputs of the graph. The task is

divided in two parts. One is the resource balancing, which in this case is the balancing of

the memory banks usage. The second is to siniplify the controlier that is going to be

mapped into a single or multipIe FPGA system dong with the data path itself. One way to

simpl@ the controller is to reduce the number of control words used in the controiler. In

most of the signai processing dgorithms, especially those with Iarge storage needs and

image processing applications, one can find a reguiarity in the usage of rnemory. If one can

exploit and take advantage of this reguiarity in the access of the memory banks, the

controller words that address the memory could be reduced substantially.

4.1. Exhaustive Search of the Solution Space
In the first attempt in the memory bank assignments, an exhaustive search routine

was developed to do these two tasks at the same tirne. The assumption is that tbere are

two memory banks and a memory bank should be assigned to each edge in the graph. With

two memory banks, a binary variable is used to distlliguish between the two; Le., a 'O'

means the first mernory bank and a '1' means the second memory bank. There are 32

edges in the graph and they are numbered fkom O to 31, and a 32-bit variable is used for

the assignment of all the edges and each bit in this number represents an edge in the graph.

For example a value of Ox33CC33CC means edge-O is assigned to bank-O, e d e l to

bank-O, edge-2 to bank-1, and so on. It is assumed that the final arçbitecture wiil have

one processing core for the $-point FFI', four inputs and four outputs. The bïnary number

assigned to the edges of the graph make a 4-bit binary number at the input, and a 4-bit

binary number at the output of this 4-point FFT at each iteration of the algorithm. This is

www.manaraa.com

caiIed a symbol, a wrïte syrnbol for the output number and a read symbol for the input

number.

I I

I . S .

Edge Nurnber: . . -
S---.----.--..

- - -

Figure 14. Picrorial represenration of a symbol

The algorithm tries to assign symbols (in this case nom OxOûûû to Ox 1 1 1 1) to the

reads and the writes of each iteration, so that, first the symbol assigned is balanced in the

number of Os and 1 s it has (this balances the rnemory bank usage) and second, the number

of symbols for reads and those for the writes are minimized. The cost funchon used is:

(number- of - read- symbols) + (nwnber- of - write- symbols) +

The exhaustive search starts counting fiom OxOOOOOOOO to OxFFFFFFFF and at

each step checks the cost function and accepts the assignment only if the current cost is

Iess than the pervious caiculated cost.

www.manaraa.com

4.1.1. Implementation Details
The algorithm is irnplemented in C and is given in Appendix A. At the beginning of

the program two arrays, a source edge and a destination edge with size of the number of

edges in the graph, are declared and initiaiized with the node nwnber that the edge

connects to. Another array is initialized with the input and output edges that coanect to a

node. Two other structures are declared for an edge and a node. The edge has three fields,

source node number, destination node number and the bank number assigned to it. A node

has two arrays of input edge numkrs and output edge numbers.

A syrnbol is deiined to have a cost, a count of how rnany t b s it bas been used

and wherher it has k e n used or not. Because each node has four input and four outputs,

there are sixteen possible symbols whose costs are defhed in the qmbol_costs array. In

the symbol's binary representation, if the nurnber of ones and zeros are balanced (two

each), the symbol cost is O. If there are 3 oneslzeros and 1 zero/one in the symbol, the

symbol cost is 1 and if there are 4 onesheros in the syrnbol, the symbol cost is 2.

There are 32 edges in the sample graph and a 32-bit number is used to represent dl

the memory assignments for the edges. A zero means that bank 'O' is assigned to that edge

and a '1' means that bank 1 is assigned to that edge. The algorithm starts by initialking the

edges and nodes of the graph and then initializes the syrnbol table. Then the exhaustive

search begins that counts fiom OxOOûûûûûû to 0- and at each iteration checks

the current cost. If the current cost is less than the latest caiculated cost, the program

reports the last cost, the current cost, the number of different words used and the cwrent

assignment.

www.manaraa.com

4.1.2. Results from the Exhaustive Search
This exhaustive search was very slow and tune-consuming, so a new technique

based on the integer hear programming (ILP) formulation and using the GAMS solver

was used and will be shown later. The results of the assignments for radix-4, 16-point FFI'

and w o memory banks summarized in the following table.

4.2. Formulating the Problem in ILP
By formulating the problem in ILP, the search space is basically Limited fkom al1 the

Read Symbols
(Hex)

3, C

infeasible solutions to some that may be a solution but not necessarily the best one. Search

space is al1 the possible assignments of rnemry banks to the edges. In the exhaustive

Table 2. Resulrs for radir-4, I6-point F R und nuo memory b& (exhausrive search).

Write Symbols
(Hex)

3, C

search, there were no means to isolate those assignments that wili cost too much* long

before checking al l the assignments. The checking routine had also too much overhead.

Once a formulation is derived, the ILP solver does a branch and bound through the

bounded search space and generates a cost. The coosaauits written, try to minunize this

Cost of Read
symbols

O

cost and arrive at an optimal solution. Depending on how the constraints are written. the

solver may reach the absolute best or a local optimum answer.

Now a detailed explanation of this formulation is given. In this formulation, four

static sets are used. 1 is the set of iteration indices or the nodes that are executed at each

step. in this case fiom O to 7. S is the set of symbols or the dBerent assignments to the

edges, in this case fkom O to 15. E is the set of edges, the edges are numbered fiom O to

3 1. The inner edges are nurnbered 6rst fkom the output of node O. And B is the input or

Cost of Wnte
S ymbols

O

Totai Cost

4

www.manaraa.com

output number, a number is assigned to each input port or output pon to the core; Le., O

to first input. 1 for the second input and so on. The same thhg is tnie for the outputs. So

in this case B is from O to 3, because there are four inputs and four outputs.

There are sets that define the edges of the graph using the writer's iteration

number (Wi), reader's iteration number (RI), writer's output (bit) number (BW), and the

reader's input (bit) number (BR). There is a dynamic set called EDGE-EXTS(E, 1. J, BI,

BJ) that has a member for each edge defined m the graph, this dynamic set is used in the

constraints. Two bïnary variables W-X(I, S) and R-X(I. S) are defined. Every '1'

assigned to W-X means symbol 'S' is assigned to the write at iteration '1'. and a ' 1 '

assigned to R-X means symbol 'S' is assigned to the read at iteration '1'.

As can be seen in Table 3 and Table 4, only one symbol can be assigned to each

iteration whether it be a read operation or a write operation. From this, the îkst two

constraints can be written, as wiIl be seen Iater (conscraints 1 and 2).

Table 3. Sarnple assignments of symbols to iterations and nodes' ourpuu

www.manaraa.com

Table 4. Sarnple assignmenrs of symbols to iterarions and nodes' inputs

The input and output syrnbols that are used are reflected in the W-SYM and

R-SYM binary variables as a '1 ' (consh-aints 3a, 3b, 4a and 4b). If the symbol is not

assigned (never used). the associated W-SYM or R-SYM wül be '0'. Using these two

variables, the total number of read and write symbols used (variables W-SYMS and

R-SYSMS), that contriiute to the final cost fiiaction (constraints 5 and 6) can be counted.

Assigned to each syrnbol is a corresponding cost due to its distance fkom the average of a

balanced memory access; i.e., for a two-bank memory system, writing or reading four

variables into memory should send two variables to one bank and the other two to the

other bank. One simplification to the problem is made by considering the nature of an FFT

algorithm. It is known that one always does read or write complex variables havuig a real

part and an irnaboinary part. Because these two parts are always read and written at the

same tirne, they can be overlapped or merged, assuming only one single variable is read or

wricten. This reduces the size of the syrnbols used.

The cost of every symbol is calculated and set as a constant parameter array. called

SYM-COST. Consaaints 7 and 8 compute the total cost of write (W-COST) and read

symbols (R-COST).

www.manaraa.com

1

R - X (I , S) - R-SYM (S) 2 O;VS

Z[W-X(I ,S) * BANK-IS-x(S, BI)] = C[R-X(J ,S) *BANK-IS-x(S,BJ)]
s S

; VE,I + J , BI + BJ,x = TotalBanks- 1

Cost = (W- SYMS + W - COST) + (R - SYMS + R- COST)

Table 5. Consrrainrs used for the 16-point FFî memory b& assignment.

To sumrnarize, constraints 1 and 2 force the assignment of at most one -te or

read symbol at each iteration. Consuaints 3 to 8 count the total number of symbols and

caiculate the cost associated with them Constraint 9, which is written for every edge,

forces the source and destination of an edge to be assigned to the same memory bank. The

number of constraints of the form of constraint 9 is one less than the number of rnemory

banks used, in the case of two memory banks, one is enough. For m r e rnemory banks this

constraint repeats with the difference that BANK-1s-1 is replaced by BANK-IS-2,

www.manaraa.com

BANK-IS3 and so on. These Boolean type variables are tme ('1 ') wherever the

corresponding bank in the symbol's digit is one, two, and so on.

To calculate the BANK-ISx(S, B), there is a constant table caiIed BITS(S,B) of

the symbol S in decimal and its equivalent value in base TotalBanks. This is because a

number is assigned to each edge that is fiom O to TotalSanks-1, which are digits of a

number in base TotalBanks. Table 6 shows how the constant table of BITS(S, B) helps

compute the Boolean BANK-1s-x(S, B).

BANK_IS-I (5.1) = TRUE
BANK-IS-2(5, O) = TRUE

BANK-1s-1 (6.1) = FALSE
BANK-1s-1 (6,2) = FALSE

Table 6. Base TotalBanks equivaienr of symbo/s inl6-point FFTanb 3 memoq bankr

The total cost is calculated in the formula number 10, and it is the sum of total

number of write symbols, total nurnber of read symbols, total cost of write symbols and

total cost of read symbols. This value should be rninunized and this is the objective

function. The ILP solver tries to minunize this and give the best assignment.

The constraints let the solver to reach an answer if it exists. Adding more

constraints makes the solver arrive at an optimal answer in much Iess amount of t h e .

www.manaraa.com

4.2.1. Automatic Generation of the ILP Source for Arbitrary FFT'
A C program bas k e n written that generates the ILP source me for an FFï with

arbitras. nurnber of points and radix. The input to the program is the number of points in

the FFT, the FFI3 radix and the number of memory banks.

The program is very helpful when deahg with bigher number of points. The k t

part of the ILP prograrn is very similar to the exhaustive search algorithm. The graph

needs to be constructed with all the edges and nodes in it. The syrnbol table and their

associated costs shodd aIso be constructed. The program makes Wnting the ILP program

easier by generating ail the source and destination edges and all the necessary data needed

for the ILP formulation.

Code generators are very popular in software design so it is in the Electronics

Design Automation. One can wnte a prograrn to generate another program for another

compiler or design tool. This C program did take the hassle off specifying the graph edges

and data in ILP.

4.2.2. Results from the ILP Formulation
The resubs of the assignments for radix-4, 16-point FFT and two memory banks,

radix-4 16-point FFT and three memory banks, radix-8, 64-point FFI' and two mexnory

banks are sumrnarized in the following tables.

Read SymboIs Cost of Read Cost of Wnte I Total Cost
Symbols

Table 7. Resulrs for radü4. 16-point FFT and nvo memory banks.

www.manaraa.com

Read SymboIs
(Hex)

3,s- 7, A, C,
ID, 33 ,3B

From these tables it can be seen that, the Iess the number of read and write

symbols, the less the complexity of the address generators and control logic. It c m &O be

Table 8. Resulrs for rudu-4. 16-pohr FFT and rhree memory banks-

Wnte Symbols
(Hm

4,5,7, A, IE,
30, 37,40

- --

y Read Syrnbols
(Hex)

17, ES

seen that balancing the memory accesses may be more costly in regards to the total cost

considered here.

Table 9. Resulrs for radu-8.64-poinr FFT and nvo memory bahnlcr

Cost of Read
symbols

O

 rite Symbols
(H-1

17, €8

The ILP solver reaches the solution in much less tirne than the exhaustive search.

Cost of Read
symbols

O

The L P formuiation and the method proposed are a good start at reaching an algorithngc

method to assigning banks to data flows of an algorithm. Heuristics should be used to do

Cost of Wnte
Symbols

this at frrst and then corne up with the proper algorithm.

Cost of Write
S ymbols

O

Total Cost

In the next chapter, the process of address assignments to each memory bank is

explained.

Total Cost

16

O 4

www.manaraa.com

Chapter 5

5. Memory Address Assignment and Generation
In this chapter, a technique to assign addresses to intermediate variables is

discussed and &O different techniques to build a hardware-based address generator is

explored. One can find different techniques presented in the literature. Designing a flexible

and efficient address generator is very diffiicult. The method used may also not be very

useful in generating addresses for different algorithms.

5.1. Address Assignment
There has been many studies on the assignment of rnemory addresses to variables

(register allocation) in the filed of Computer Science. A number of algorithms have been

developed mosfly for use with high-level language compilers. The commonly used

aigorithm is the graph coloring [25], [26] and how to 6nd the minimum number of colon

needed to properly color a graph. This minimai number of colon is also called the

chromatic number of the graph.

Basicaily, coloring of a aven graph G = (V. E) with K colors, where V is the set

of vertices, E is the set of edges in the graph and K S IVI, is to fkd function f: V + (1, 2,

. . ., K} such that f(u) # f(v) where (u, v) E E. It can be said that colorhg of a graph is to

assign a color to each of its nodes so that the nodes comected by an edge have different

colors.

www.manaraa.com

Register docation is done by first creating a regisrer intaference graph, wbich is

a graph that bas V nodes that represent the variables and there would be an edge between

two variables that are alive at the same time during the computation- These nodes are said

to interfere with each other; thus the name interference graph. M e r this step, for a limited

number of K registers, one should fïnd a K-colorable graph.

The graph-coloring algorithm 1271 belongs to the NP-complete set of problerns

that rnay result in an impractical amount of computation that is needed to find out the

number of colors. For this reason and the fact that for f d y complex DSP algorithms with

large number of data stored in rnemory, the graph c o l o ~ g algorithm wodd be unrealistic

to be used for address assignrnents for large nurnber of registers, other methods should be

used. The graph-coloring algorithm is mostly used in high-level language cornpilers for

CPU architectures with srnd number of registers or for register assignment in synthesis of

an architecture with few number of registers.

For different algorithms, one can exploit the regulanty of the access and find a

good address a~si~gment. As was seen before, the access scheme codd &O affect the final

architecture and the maximum number of pipeline levels. There is an efficient storage

scheme proposed in [1 SI for assignment of addresses for a ladix 2 RT. A better storage

scheme will be seen later that does not have the limitations of this assignment.

5.2. Address Generation
One of the chailenging tasks after register allocation and rnemory address

assignment, is the address generation. Once all the addresses of source, intermediate and

www.manaraa.com

destination variables are known, one can corne up with different schemes to generate those

addresses. There are two schemes for generating addresses for a specific algorithm.

5.2.1. Software-based Address Generation
In general, loop constructs or dedicated constant lookup tables can be used to

generate the addresses for a specific algorith A dedicated microcode sequencer or small

rnicrocontroiler implemented in hardware could execute the program to generate the

addresses. This program could be hard coded h o a ROM and even for f lexi i ty in

rewntable memory. The advantage of this scherne is that the program that generates the

addresses could be modined to generate a new set of addresses for irnplementing another

algorithm The disadvantage is that special consideration is to be made in designing a

dedicated microcontroller circuit.

Dedicated Port J

Figure 15. Sofnvare-based (microcontroller) address generator

Another use of software is for analyzing the addresses and hdhg a regdar pattern

and to exploit this pattern to designing a much simpler and yet workable address generator

in hardware using dedicated logic.

www.manaraa.com

5.2.2. Hardware-based Address Generation
Generating addresses for a specific aigorithm is very important and couid become a

bottleneck in execution of the algorithm There have been many studies to corne up with a

scheme to generate an address of a variable in memry on the fiy. For specioc algorithais

one can h d simple methods to generating these addresses. The comrnody used rnethod is

using loo k-up tables, which is very costly on the memory requirements and is mostly used

in cases were the number of addresses are minimal-

Another method is the use of dedicated cornputhg hardware to generate the

addresses on the fly. One can construct an address generator by using counters plus

additional adderfsubtractor, bit-shufflers, some logic andlor look-up tables. There bave

been many shidies in designing a GAG" ([28], [29], 1301, [3 11).

For many applications, one can exploit the access regularity of a specSc algorithm,

by using some transformations and changing the access order of the algorithm to take

advantage of a much simpier address generators. In one study [32], by baving al the

addresses of the algorithm in question, one can generate them by using sirnple counter, bit

shuffling and some logic and/or look-up table if the number of addresses is a power of 2.

Counter Bit Shuffler

+ Output Address

l9 GAC = Genenc Address Gencrator

45

www.manaraa.com

Figure 16. Simple address generaror

Figure 16 shows chis simple address generator obtained by using this algonthm.

The algorithm stans with a list of addresses (whose total number is a power of two) to

generate. It then s t m with the fmt bit of these addresses and follows these steps:

1. If the list is aii zeros or aii ones, the process fcr this bit is done and this bit is

smck and '0' or ' 1 ' whichever applies.

2. Split this Est in h a .

3. If the two halves are equal, go to step 2 otherwise continue.

4. If the two haives are not logicai inverse of each other, the sequence is a serni-

random sequence and is dealt separately. Otherwise continue.

5. If the two haives are equai, then if they are all ' 1 ' the counter bit is directly

connected to the address bit, if it is 'O' the counter bit is inverted and connected

to the address bit-

6. If the two halves are n9t equai, the counter bit is ExORed with whatever bit is

found by going to step 2 again.

For a semi-random sequence, basically the bits that are '1' shouid be decoded. The

basic idea is to try to match (decode) the counter bits or a combination of them using

inverters, AND, OR and XOR gates.

This algorithm has been translated to C based on the original paper [32] and is

provided for use with the example design in the next chapter.

www.manaraa.com

Chapter 6

6. Using the Techniques in an Example Design
In this chapter, a demonstration is made of most of the techniques discussed, to

impiement a 1014-point cornplex FFT hardware. Fust, the architecture to be irnplemented

is presented, then deeper aspects of the architecture is shown., and nnally different modules

used and how to implement them are discussed. The design is cornpletely done in MiDL

and the results of simulation and synthesis is presented later.

6.1. Which FFT Algorithm Implementation to use?
In chapter 3. Figure 6, an implementation of the FFï algorithm cailed Decimation-

in-fiequency that is known as Cooley-Tukey implementation was seen. The FFT is break

down of the DIT'' of a finite sequence { x[nJ); O n L N-l into smaller DFTs and

combining them to get the final resdt. The DFï itseff is defined as:

The complexity of a DSP algorithm is determined by the number of multiplication

operations to be done. The number of multiplication operations in a DFï is of 0(FJ2) and

" Discrete Fourier Transform

www.manaraa.com

for an FFT is of O (N l o g N) , which &es it more suitable for implementation in

hardware or software (refer to [45] for detaüed explanation of DFï and FFI').

There are many ways to break down a DR. One is caiied a decimation in time and

the other is decimation in bequency. The two butterflies used for each of these are shown

in Figure 17.

Decimation-in-Frequency

(a, ail / (M xil

(b* bi k WC.
= (a, -6 ,) * wrk -(a, -bi) *w4

Figure 1 7. Decimation-in-tinte and decimarion-in-frequençy burrerfles

As can be seen, the number of operations in each implementation is the same but,

the decimation-in-fkequency is more suitable because the multiplication is done after the

additions. Usually if multiplication is done hrst, the results would grow in nurnber of bits

needed to represent them and because most implementations are based on hed-point

addition and multiplication, the results need to be rounded. This rounding of the results

introduces error and noise in the system. So the FFI' hardware based on the decimation-

in-fkequency FFï is selected for this demonstration.

www.manaraa.com

6.2. An Efficient Architecture for a 1024-point Complex FFT
As shown in chapter 4, the optimal number of memory banks needed during the

cornputation of a radix-2 1024-point FFT with one butterfly is two. So based on this, two

distinct memory banks are needed to hold the input data, the temporary intermediate in-

place results and hally for the storage of the FFï result. Because a complex FFI' engùie

is to be implemented, twice this amount is needed to store the real and imasinary parts of

each value. So the tord number of memory banks needed is four.

An algorithm with a single butterfly was selected for implernentation. This results

in the srnallest area possible for this design. If more performance is needed out of this

design, more buttedy elernents cari be assigned that calculate more intermediate values at

the sarne t h e . With careful design and scheduhg, one can achieve greater performance

by sacrificing more silicon area.

In chapter 3, an architecture was seen that cm be used to implement most signal

processing algorithm. Rehïng that architecture for tbe complex FFI', the following

architecture is arrived at.

www.manaraa.com

WAG l - :-*

Figure 18. P roposed architecrure for complex FFT

There is only one buttedy computation engine. niere are also four dinerent

address generators used to address the source operands (both real and ïmaginary) and the

destination operands (both real and irnaginary). Another memory holds the twiddle factors

that would be addressed with another address generator.

6.3. FFT Signal-fiow Graph and Memory Access Pattern
The Cooley-Tukey Unplementation of an FE, accesses the source variables in-

order and stores the intermediate results in place of the source variables. The starthg point

is a Cpoint FFT, which is increased to 32-point FFï to find a regular pattern for storage

and accesses to those variables.

The arrangement of the variables of a 4-point and an 8-point dechation-in-

frequency FFT and their corresponding signal flow graphs are shown in Figure 19.

www.manaraa.com

3-point d i x - 3 FFï rnemory access for a single butterfly and single memory bank

8-point radix-2 FFT niemory access for a single bunefly and single memory bank

Figure 19. Cooley-Tukey FFT access parrerns

As c m be seen the source and all the intermediate variables are stored in increasing

order fkom zero and the results are stored in bit-reversed order. In the corresponding

signal flow graphs, the cornputation order is ftom top to bonom and 6rom left to right.

This storage and access scheme is not suitable for use with two memory banks and a single

butterfly engine. The reason is that, with two storage banks, collisions should be avoided

to speed up the memory access. Otherwise, when collisions or memory access conflicts

occur, the memory should be accessed consecutively to retrievelstore two

www.manaraa.com

source/destination variables. Now a storage and access scheme should be found that is

more efficient and easy to implement in hardware.

6.4. Manipulating Memory Access Patterns
In general, to avoid collisions in multiple rnemory processing engines, it is best to

interleave the storage of variables. B y interleaving, one means storing variables accessed at

consecutive points in tirne in different banks of mernory. Interleaving does not dways

alleviate the memory conflicts in every algorithm and a more detailed study of a specific

algorithm is needed to devise a good storage and access scheme.

In [14] and [151, an efficient way to store intermediate variables of a radix-2 R

algorithm is proposed. In that paper, the suggested method by authors results in two

different access patterns. One is a stride 1 and the other is bit-reversed, They do not show

al i the iterations of the computation. From the storage order they suggest, the first pass of

computations is with no conflicts, but the second pass will cause some conflicts.

The storage and access scbemes are rehed to have zero conflicts and simple

address generators. The data-path is ais0 pipelined to achieve the fatest execution cycle.

The zero conflict scheme makes sure this pipeline is not starved or stalled to get the

maximum performance.

To do this, one should start îkom the nodes that produce the last results and start

assigning addresses to those nodes keeping in mind to interleave the accesses. Then try to

minimize or even remove confücts by simple swapping using multiplexers and additional

registers. This can be derived f?om simple observation of the access patterns. This

architecture is now generalized to any number of points in the FFT as foliows.

www.manaraa.com

First lets look at the addresses and uy to fïnd their patterns. Figure 20 shows the

addresses for a 4-point and 8-point radix-2 DIF FFï.

Samples in memory afier each iteration
BO B 1 l B O B l (B 0 BI
O 2 1 0 i l 0 2

3-point radix 2 FFT memory access for a single butterfiy and two memory banks
--

I memory after each iteration
BO BI IBO BI II BO BI

8-point radix 2 W memory access for a single buttedy and two memory banks

Figure 20. Modifieci accesses for 4 & 8-poinr Cooley-Tukey FFT (nu0 memory bu&}

From this figure and the addresses, it seems that dl the writes are bit-reversed and

ai l the reads except the l m one are sequential (strïde I) and the last read is bit-reversed.

To c o n f i this, the 16 and 32-point FFïs were tried and the same conclusion was drawn.

From these tables, it is c1ear that to write the results of the butterfly back to

memory at the proper location, the results of two consecutive iterations need to be

scheduled so that results fiom one iteration is sent to the same memory bank and the next

www.manaraa.com

iteration to the other memory bank. The final architecture is shown in Figure 2 1. As can be

seen, a single butterfly engine is foiiowed by a skew buffer that routes the results to a

diffkrent banlc. There are four registers and two multiplexers in this skew buffer to skew

the results so that they are available for writing to the address provided by the address

generators based on the address assignrnents doue in Figure 20. The details of this skew

buffer is presented in the next chapter.

Figure 2 1. Final FFT architecture with skew buffer regkters

The controuer is responsible for orchestratuig the order of operations and enabling

different resisters at different cycles, controlling the multiplexer select hes , and the

address generators.

Next chapter will discuss the data path and control logic in detail and present

different aspects of VHDL design.

www.manaraa.com

Chapter 7

7. Detailed VHDL Design
In this chapter, all the necessary steps fÏom specification to implementation of a

radix-2 1023-point Cooley-Tukey FFT engine with two memory banks is detailed. The

design is compIeteIy done in VHDL and successfully fitted on a Xilinx Virtex

V150PQ240-6 [33]. The synthesis is done using the Synplicity's Synplify tool and

simuIations are done using ModeITechnology's Modelsim VHDL simulator.

The data path design is detailed first and dinerent tradeoffs made in the process are

shown then the control logic design is explained.

7.1. Design of the Data Pafh and Its Hements
In most signal processing algorithms especially in Digital Signal Processing (DSP),

there are many basic elements that are used to constmct the data path of a system The

basic eIements of a DSP system are addition, multiplication and multiply-accumulate

operations. There are other operations that relate to DSP system in general, but the ones

mentioned above are the rnost basic and widely used in any DSP aigorithm.

To improve the aredperfonnance merit of a system, one should first do

optiMzations at the highest level of a design, namely: specification and architecture. After

architectural optimizations, the system's building blocks or components should be

irnproved. This improvement wiii, in effect, enhance the overail system operation.

www.manaraa.com

The most costiy operation in a DSP system is a muitiplication operator. A

multiplier module is both area consuming and &O sluggish in the performance aspect.

Therefore, multiplication is the main bottleneck in the arealperformance of a data path and

can change the characteristics of a system in both aspects-

Choosing the best components in general and the best multiplier for any DSP

system, is the best strategy to follow for improving the system performance. In the

following sections, different architectures for an adder and a multiplier, wbich are the basic

building blocks of the FFT engine, are reviewed-

7.1.1. Addition Schemes

Adders could be categorized into the foflowing: 1-bit adders, carry-propagate

adders (CPA), cany-save adders (CSA), and multi-operand adders [34].

The 1-bit adders indude Half-Adder (HA) and Full-Adder (FA). In the carry-

propagate adders the carry bit to the next stage of an n-bit adder is denved nom the

previous stage's carry-bit and the current input bits with some additional logic. Carry-

propapate adders include npple-carry adders (RCA). cany-skip adders (CSKA), carry-

select adders (CSLA), carry-increment adders (CIA), conditional-sum adders (COSA),

carry-lookahead adders (CLA), and parallel-prefix adders (PPA).

The paraiiel-prefix adders are the most flexible ones that include a preprocessing.

carry-lookahead, and postprocessing step. They c m have the area and speed

characteristics of a i l the adders mentioned above. They are basically a universal adder

architecture with aii the area-deiay trade-offs. There are three different variations of PPAs.

www.manaraa.com

They are called Kogge-Stone implementation (PPA-KS), Skansky ïmplementation (PPA-

SK) and Brent-Kung implementation (PPA-BK).

Carry-save adden (CSA) are three-operand adders that do not do any carry

propagation and just Save (pass) aü the carry bits calculated. Multi-operand adders can be

comprised of the carry-save adder stages and carry-propagate adder stages to compute the

final addition. These adders can be constructed in array or tree (Wallace tree) topologies.

Hdf Adder i Full Adder Ripple Carry Adder (RCNCPA)

cou,

p, = 0; ci 4- C,.I and cbl selected
Pi = 1 : C, -+ c,- 1 and ci. 1 skipped

Carry-s kip Adder (CS KA)
_ _ _ . _ _ _ _ _ _ _ . _ _ _ . _ _ _ _ . _ _ . . . ~ . ~ ~ ~ ~ . ~ ~ ~ ~ ~ ~ ~ ~ ~ - _ . ~ ~ - _ . _ _ - _ - - - _ _ _ ~ ~ ~ . ~ ~ ~ * ~ . ~ . ~ ~ ~ ~ . ~ . ~ ~ . . . - - . - . - - - - - . . - . * ~ . . ~ - .

Preprocessing:
gi = ai . bi
pi = ai @ b;

Carry-Iookahead-.-- .) Rcfix Aigorithm 1
cou, Preprocessing: ++ ...---.-- .) 1 - - * * * - * -

SI = pi . Ci

Parallel-prefix Adder

Figure 22. A few diferenr d e r structures

57

www.manaraa.com

The ripple carry adders are almost the srnaiiest d e r CSKA adders and the slowest

ones, PPA-SK / PPA-KS and COSA are the fastest adders for 64-bit additions-

Exploring aii these structures and choosing the optimum area/perforrnance needed

depend on the target technology that is used. For ASICs, these structures are aJl viable

solutions and any of them can be implemented. The selection depends on the design

specifications and cowtraints. These modules should preferably be implemented and put in

a iï'brary that a high-Ievel symhesis tool has access to. Then the area/speed selection would

be the assigrment part of the high-level synthesis. If the selection of the architecture is

done at a higher level, the tool would also be able to insert pipeline registers to speed up

the performance of the adden. yet preserve the original algorithm.

~ r e a Adder Relative Area

Figure 23. Areas for differenr adder architecture

www.manaraa.com

Figure 24. Speed for differenf adder architectures

The case is completely different for FPGAs. ALmost al l FPGAs have dedicated

cany-logic resources to speed up the adders, subtractors, incrementers and counters.

These carry chahs can go up a d o r down the FPGA die but not in all directions. If the

regular routing had k e n used instead of these dedicated routes, the delay associated with

arithmetic operators would be big.

Ali these architectures are presented to show the different vade-offs and

architectures possible. One should refer to other references for complete discussion on

specific algorithm.

7.1.2. Multiplication Schemes
As said More, multiplication is very costly regxding both area and speed. There

are many architectures 1351. [363 that help -ove the speed, but at the expense of

increased area.

www.manaraa.com

The following are some examples of different multiplier architectures:

1. S hifi and add and bit-serial multiplier

2. Booth and modified-booth algorithm

3. Wallace m e multiplier (using CAS and CLA)

4. Non-additive multiply moduius (NMM) using Wallace tree and CPAs

6. Array (Braun) Multiplier

7. Baugh-Wooley multiplier

8. S ystolic array multiplier

9. Constant coefficient multiplier

10. Disuibuted arithmetic multiplier (a special case of constant coefficient

multiplier)

1 1. Partial product lookup table based multiplier

The shifr and add multiplier is based on a single adder with three regirters and

some control circuitry. One register is used as the multiplicand and another for the

multiplier, which wili be shifted at each clock tick, and the last register that is an

accumulator and holds the partid result and the 6inal result of multiplication. This

multiplication scheme can be done with senal input data.

www.manaraa.com

Shi6 and Add Multiplier i LUT-based Multiplier

H
B 1 : - Result
000 P c = P :
001 P < = P + A ;
010 P < = P + A;
011 P<=P+2*A;
IO0 P <= P - 2*A:

1. Extend B by one bit at right
2. Sien extend A by size of B

Modified Booth
Algorithm

3. Check thethree bitsof B(1), B(0) and B(-1)
4. Compute new partial result based on the lefi table
5. Shift A left by 1 bit
6- Shift B right b y 2 bits
7. Repeat steps 3 to 6 N/2 tirnes where N is the size of vector B

-- - -

Figure 25. Diflerent muliiplicarion archirecrures

www.manaraa.com

Figure 25 shows four difTerent popular multiplier architectures. The fint one is a

shifi and add operation that is very area efficient. The other one is a lookup table based

6x6 bit multiplier that divides the two input vectors A[5:0] and B[5:0] and forms partial

multiplication results and adds them together. By using four 3x3 lookup tables that hoId

the values of multiplication of 3-bit by 3-bit numbers and a few shifi operations, which use

no logic to irnplement, this multiplier forms the final result.

The third multiplier structure is a modified booth multiplier, which also- like the

lookup table one. uses a divide and conquer scheme. This algorithm partitions the n-bit

multiplier into n/2 3-bit fields with 1-bit overlap. Then based on these three bits it does an

adasubtract by multiplicand, add/subtract by twice the multiplicand and no operation.

M e r n/2 iterations the final result is ready. This multiplier can be pipelined at every stage

of operation up to n/2 levels. This is a very efficient multiplier in ASIC implementations.

The last multiplier is an array (Braun) signed multiplier that is the exploitation of

the multiplication operation expanded into shifts and additions. The fist stage is a series of

AND gates that ANDs the least signincant bit of multiplier by ail the bits of the

multiplicand. The next stages are a senes of adder-multiplexers that pass the previous

stages partial result if the corresponding bit of the multiplier is zero, otherwjse it is added

to the multiplicand. To perform signed multiplication, adders are chosen to be one bit

larger and the operands are sign extended and also the last stage should be a subtarctor-

multiplexer stage. This multiplier is very easy to impIement both in ASIC and FPGA.

Although it has more area and it is slower than the Modified-Booth-Recoded multiplier, it

is faster and more suited to FPGA implernentation.

www.manaraa.com

Pipluiing this multiplier is a bit more complicated and registers should be put at

different places so that the overail Uming (amival of related data) of the multiplier does not

change and the correct result is produced at the output. It is possible to do n-level

pipelined array multiplier where n is the number of bits in the multiplier. If the number of

bits in the multiplier and multiplicand are not quai., there is a trade-off between choosing

more adder bits and more levels.

In DSP appkations there is also a mote domutant operation that is the multiply

accumulate of a number of vectors by another constant vector o r the inner product of a

M

vector with another constant vector. This is shown by: y = A, X,
k=l

In thiç equation Ai; is the constant vector and Xi, is the input vector. This operation

is best done with what is called Distributed Arithmetic (DA). Ln DSP algorithms, it usually

is diffïcult to distinguish individual operations (additions, multiplications) and hence the

name Distriiuted Arithmetic. This method is basically a bit-serial operation with the

difference that multiple vectors can be applied sirnultaneously. This is usudy called n-bit

at-a-tirne DA; where n is the total number of bits seriaily applied to the DA module. The

DA module is composed of a number of lookup tables, an accumulator and a number of

shifier units. For better understanding of this enabling technique refer to [37], [38], [39].

1401, and [4 11.

7.1.3. FFT Butterfïy Data Path hnplementation
As was seen in the previous sections, multipliers are very costly to Ilnplernent. In

chapter 6 decimation-in-kequency FFï algorithm was selected for implementation. From

www.manaraa.com

Figure 17. the detailed data path for the D E FFT butterfly engine can be derived. It can be

seen that there are three additions, three subtractions and four multiplications by the

twiddle factors, which are to be pre-computed and stored in lookup tables.

Lookup

I A-)i -
Memory Bank L -

(Real)
- - ---* - Skew Buffer

Figure 26. DIF burtefly engine data parh derails

In Figure 26, pipelining registers for the adders and multipliers are not shown. For

increasing the computation speed of the engine, the multiplier is heavily pipelined and

additional pipeline registers are inserted after the adders to balance and preserve the actual

data dependencies of the data flow. One should be careful of choosing the total number of

www.manaraa.com

pipehe levels. This is because, if the number of iterations in the FET is less than the

number of pipeline levels, the results of the last iteration have not yet been written back to

the mernories. If this is the case, the algoritbm would not fiinction properly. Tbis is m e of

most algorithms, in which the retimuig and the addition of pipeline registers shouid not

affect the outcome of the dgorithm,

Figure 27 shows the detailed view of the skew buffers. The inputs to each skew

buffer are the two real and the two imaginarv parts of the b u t t d y output. There is a

counter that counts the number of the data input to this buffer. At each step of the count a

new set of values are stored in a register p& fïrst RO, then RI, then R2, then R3 and the

cycle repeats. The counter is delayed by two cycles and which selects a pair fÏom the

register pairs. This construct rnakes sure that the data has no gaps and the correct order of

values are generated at the outputs.

- --

Figure 27. Skew buffer deruiled schemaric

www.manaraa.com

The input data is assumed to be 8 bits wide for both real and imaginary parts. The

memory banks are chosen to have 16-bit data busses. So, the input data is written to the

memories on their least significant 8 bits and the final result is truncated to 16 bits for both

reai and imaginary parts (most signifïcant bits of the final result is used). It is the

responsibility of the user to make sure that the final result does not overfiow.

The other components are sized based on their input values. The adders and

subtractors accept 16-bits signed data. Adding or subtracthg two 16-bit &ta results in a

l'/-bit data. The multipliers should multiply the output of adders (17 bits) by the &bit

twiddle factors. This results in 17x8 signed multipliers that produce 25-bit result. The

output of the butterfly are uuncated to 16-bits, and written back to memories. This may

result in some noise ([42], [43], [Ml, [45]) to be added to the computation, which is true

of ail fixed-point systems.

As c m be seen fkom Figure 20, for an n-point FFï, two memory banks with d2

words each are needed and because two banks are needed for storing the reai part and

imaginary parts of a complex data, there should be total of four memories of ni2 words

each. For a 1024-point complex FFT with 16-bit data, four 512*16-bit rnemories are

needed. The total number of bits used for rnemories is 4*512*16 that is equai to 32768

bits.

With this architecture, there could be a confiïct and race to access the memories.

The output of the skew registers shouid be written to the nrmories and the buttedy

shouId be fed by new data fiom the memories. One could scheduie the operations to be

one after another and sequential- But this would increase the number of cycles and reduces

www.manaraa.com

the performance. To alleviate this, one can use dual-port memories. Dual-port memories

are vex-y popular in most FPGAs and are ako available in most A S K hiraries. If one

wanted to use discrete rnemory component, this would be very costly and probabIy not a

good choice and other schemes should be considered. Having single chip is more desirable

than multiple chips in many applications.

FPGAs are very abundant in the number of regkters that can ako be used as

rnemory elements. But if rhey are used as memry, there would not be enough registers

lefi for implementing state machines and other functional elernents that need registers. In

modem FPGA architectures, other than abundant registers, there are &O sparse/srnall

flexible rnemory elements in each CLB" that can be configured as single-, dual-port or

even Content-Addressable Memory (CAM). There coutd also be flex1'bIe block mernories

that are larger in size compared to the sparse mernory blocks. In X i h Vinex FPGAs,

there are enough dual-ported block memory to implement the 1024-point FFï.

CLBs could also be configured as read-only memory (ROM) or Iookup tables.

This is useful for implementing the lookup tables for the real and imaginary parts of the

twiddle factors. The twiddle factors are computed using a C program for a specific

number of points and are hard coded into the VHDL description.

7.2. Design of the Control Logk
The controller design is responsible for managing the order of operations and to

provide control signals to different modules. It has to control the multiplexer select lines,

the different modules' enable signals, and the memories control si@. This module is

" Configurable Logic Block

www.manaraa.com

also responsible for receiving the input data and storing it in the proper order into the

memories. It is also responsible for sending the result of the computation out of the

module. The input data is assumed to be a Stream of 2048 bytes. Each byte pair is a set of

reai and imaginary data samples.

Clock c
Clock

Figure 28. Top-ferel module for 1024-point complex FFT and irs I/O timing

Figure 28 shows the top-level module for the 1024-point complex FFT with the

associated input/output timing. The Start signal is asserted and then the input data is

applied at the DataIn port, real followed by the imaginary part. After the assertion of the

Start signal the Busy signal wodd go high indicating that the module is busy processing.

Busy stays high untii the FFI' computation is done and the data is sent out on the DataOut

port. The start of the output data Stream is indicated by the Done signal.

There should be a way to transfer the input data to the mernories through the

DataIn poa. The controlier is a F d t e State Machine (FSM) that polls the Start signal. As

www.manaraa.com

soon as this signal goes hi@, the state machine starts one of the bit-reversed address

generators, reads in the data and stores them at the proper memory bank and location that

was already shown in Figure 20. This is s h o w as state SO in state diagram of Figure 29

aiong with its detailed state names.

Afier aii the data sampks are read into the mernories, the controiier enables the

data path, starts reading the data samples fiom the memory banks and sends them to the

butterfly engine. The enabk signa1 on different modules reduces the power consumption of

the system and is a good design practice to minimize the amount of logic that k king

switched. The controiler would write the result of the coriiputation back into the mernories

at the proper locations afier a number of cycles after the application of data that is equal to

the pipeline delay of the buttedy engine. The controiler will repeat this process 5120

times, which is calculated as (n/2)*logz(n) for an n-point FFT. This number is the number

of buttedies in an n-point FFI'. The number of levels in the FFT is log2(n) and the number

of nodes in each level is m. M e r the last iteration of the FFï computation the data path

pipeline should be flushed to memory. This is shown as stzte S 1 in state diagram of Figure

29 aiong with its detailed state names.

Finaiiy the FSM has to read the b a l result out of the rnemories and send them out

on the DataOut. Once this is complete the process is done and the controller goes into the

IDLE state where it is ready to receive another set of samples. This is shown as state S2 in

state diagram of Figure 29 dong with its detailed state names.

The controller is respoasible for generating ai l the control and enable signals to all

the modules in the design, so it has lots of signals traveling around the chip. For a chip to

www.manaraa.com

run fat , the data path should be able to run at the required speed and also the controiier

should be able to provide the control signals at the proper tirne. One-hotkold encoding for

the state machines are preferred because of the abundant registers in the FPGAs.

Otherwise the decoding logic reduces the speed of the design. This encoding type could

&O be very useful for optirnizing critical parts of an ASIC design, because of the much

less complex decode logic for the state machine.

Figure 2 9, Simplified srare diagram of the conrroller

7.3. Design Synthesis
The synthesis is done using the Synplicity's Synplifir tool. The constraints used are

only clock consuaints. The goal is to nin the design at a fkequency of 50 MHz. Other

types of constraints couid be input delays (arriva1 times), output delays (max delay), muiti-

cycle paths, which are cornmon to both FPGAs and ASICs and clock skews, output drive

and load, which apply to ASICs only.

www.manaraa.com

7.3.1. Synthesis results
The design is successhiiy placed and routed on a Xilinx Virtex V150PQ240-6

using the Xiluur Alliance v1.5i. It occupies 94% of the device and 66% of the avaiIable

block RAMs. The timing reports also show that the design is able to run at 50 MHz. Total

equivalent ASIC gates, reported by Xiluix Alliance, is 165896.

7.3. Construcfing a Testbench
For every HDL design, there shouiù be an associateci testbench to ver@ the

functionality of the design. This testbench could also be used to sirnulate the back-

annotated design afier the place and route in the FPGAs and d e r the layout. and routing

in the ASICS. A testbench could be written for every single module or for the top-level

module only. As a designer becornes more profident in doing designs in HDL, there may

not be a need for wery single module, and the top-level simulation is enough. A good

testbench should cover al l possible scenarios of the unit under test (LR[T). Usually, the

test vectors or stimulus of the design is stored in files that are read by the VHDL testbench

and are applied to the UüT.

www.manaraa.com

-

Figure 30. Basic simularion resrbench

For verifjing functionality. one can choose between two methods. One is that the

designer should construct the behavioral model of the design and instantiate it in the

testbench, dong with the unit under test. Then the stimulus is applied to both the RTL

design and the behavioral model- And hal iy the two outputs are compared in the

testbench itself. The second method, which is easier to implement, is that the outputs of

the unit under test are stored in files that are compared with the expected results fÏom

another source (sofiware simuhtions). The second method is chosen here for the sake of

simplicity and that the purpose and emphasis of this work is on showing the techniques

presented.

7.4.1. Results from the simulation and the FFT benchmarks
From the simulations and the structure of this FFT, it is seen that it takes 2048

cycles to transfer the 2048 data bytes (reai and imaginary) to the mernories and it also

takes 2048 cycles to send out the nnal results. The FFI' computation takes

12+(1024/2)*1og(1024)+12 = 5 144 cycles. With 20 ns cycles time (kom the synthesis

www.manaraa.com

result of 50 MHz dock), for tramferring data to/fkom the rnemories it takes 40.96 ps and

to cornpute the FFï it takes 102.88 ps- If this cornputation is done after another process,

then one can ignore the transfer of data to/fiom rnemories.

A cornparison between different implementations (fkom custom ASIC [46], [47] to

DSP processor iniplementations) of the 1024-point radix-2 complex FFI', can be seen in

Table 10 and Figure 3 1 (sorne of the results are taken fiom reference 1481). As can be seen

in chis figure. even the single butterfiy implementation of the FFï k very fast compared

with most of the general purpose DSPs. The fastest (46 ps) û the Analog Devices Inc.

ADSP-21160 and the second fastest (61 ps) is the custom FFï ASIC TM66 swi-FFT

from Texas Memory Systems Inc. It is seen that it is possible to add more butterflies and

reduce the execution tirne. With two butterfly engine, the execution tirne goes down to 52

ps and with four butterflies down to 26 p.

, TI TMS320C60xx 104
TI TMS32ûC80

, TI TMS320C67xx
Analog ADSP2 162

110
125
170

Motorola DSP56002 1 210
Lucent DSP1627
NEC UPD77015
Analog ADSP2 17 1
TI TMS32ûC44
TI TMS320C3 1

3 IO
320
360
390
410 .

Tuble IO. FFT benchmark resulrs (rabulated)

www.manaraa.com

k
Figure 3 1. F R benchmarks resulrs (chan)

www.manaraa.com

Chapter 8

8. Conclusions and Future Work
This concludes the work and provides the missing links for Future researchers and

interested individu&.

8.1. Conclusions
A genenc architecture has been proposed that can execute a variety of digital

signal processing algorïthms. It consisted of a core processing engine and multiple

memory banks that provide the input data to this core and are also used to store the

intermediate values and the final results of the computation. A method has k e n proposed

to extract the maximum pipeluie levei for a speci6ic algorithm represented in signai flow

graph f o m From this signal flow graph, and by e x p l o ~ g different scan orders of

operations, one can extract the deiays on each recursive edge of the graph. If all these

values are greater than one, it is possible to move al l but one of them inside the data path

and use them as pipeline registers to speedup the processing engine. After this step, the

graph is scheduled and the edges are to be assigned to a memory bank while balancing the

accesses. This problem falls into the category of NP-complete problems for a iarge number

of edges, so an exhaustive search rnethod has been developed in C. An ILP formulation is

also presented that assists in this assignment and reduces the arnount of tune necessary to

arrive at a reasonable assignrnent, An automatic L P generation program has been written

in C that works for an arbitrary radix-2 FET algorithm.

www.manaraa.com

A prograrn has been written (based on previous work) to ease in the design of a

hardware-based address generator for arbitrary addresses of size power of two. An

efficient architecture for a 1024-point radix-2 FFT bas been presented. For this

architecture, a novel address assip.ment and ordering of cdculations has k e n proposed

for a two memory bank system that removes the memory address confïicts and provides

the core with proper data.

Finaily, the complete VHDL design of this 1024 point radix-2 bas been done,

the design was ïmplernented in an FPGA and simuiated in a testbench. A C program has

been developed for the generation of twiddle factors for this design.

8.2. Suggested Directions to Continue This Work
The architecture proposed is generalized enough to be used for dinerent DSP

dgorithms. This should be verified with other types of DSP algonthms and proved

efficient with those algorithms. The process of bank assignments ushg the exhaustive

search takes unreasonable amount of time to run, even the LLP formulation has a long mn

t h e . Other procedural and forma1 methods should be devised that would corne to a

solution with less amount of t h e .

The heuristics to find the best order of operations and the access order to the

memones and to assign addresses for each rnemory bank should be formaked and

expanded to cover different dgorithms.

There could be a lot of hprovements in the address generator and its

generalization. One c m h d an automatic processes to s ynthesize arbitrary hardware-

based address generators for any type of access and algorithm.

www.manaraa.com

The implementation of the FIT design could be improved by paralIeIizing the

transfer of data idout of the memones; Le,, while new data is king transferred to the

memones the old results could be transferred out of the rnemories. This requires some

modifications to the fkst write and iast read orders; otherwîse there would be confiicts and

data corruption. The number of buttertly engines and the memory baaks could be

increased to increase the throughput and decrease the execution t h e of the FFT. New

address assignrnent and access order shodd be devised to deviate the conflicts.

www.manaraa.com

Bibliography
[Il Donald E. Thomas, Jay K. Adams, H e m Schmit, "A Mode1 and Methodology

for Hardware-Software Codesign," IEEE Design & Test of Computers, pp. 6-15,

1993

[2] Sanjaya Kurnar, James H. Aylor, Barry W. Johnson, W m A. WuK, "A Framework

for Hardware/Software Codesign," IEEE Computer, pp. 39-45, Dec. 1993

[3] Alan S. Wenban, John W. O'Leary, Geoffrey M. Brown. "Codesign of

Communication Protocols," IEEE Computer. pp. 46-52, Dec. 1993

[4] Nam S. Woo. M e d E. Dunlop, Wayne WoK "Codesign korn Cospecincation~"

IEEE Computer, pp. 42-47, Jan. 1994

[5] Rajes h K. Gupta, Giovanni De Micheli, "Hardware-Software Cos ynthesis for

Digital Systems," IEEE Design & Test of Computers, pp. 29-41. Sep. 1993

[6] Asawaree Kalavade, Edward A. Lee, "A Hardware-Software Codesign

Methodlogy for DSP Applications." IEEE Design & Test of Computers. pp. 16-28,

Sep. 1993

[7] David E.Van Den Bout, Joseph N. Morris. Douglas Thomae, Scott Labrozzi, Scot

Wïngo , Dean Halùnan, "AnyE3oa.d: An FPGA-Based Reconfigurable S ystem,"

IEEE Design & Test of Computers, pp. 21-30. Sep. 1992

[8] Robert A. Walker and Rad Composano, "A Survey of High-Level Synthesis

Systerns," Kulwer Academics hblishing, 1991

www.manaraa.com

191 A. Aho, R. Sethi and J. Ulman, "Compilers," Addison-Wesley, 1986

[IO] H. Lipp, "Methodical Aspects of Logic Synthesis," Proceedings of IEEE, vol. 71,

pp. 88-97, Jan. 1983.

[1 1] H. Trickey, "Flamel: A High-bel Hardware Compiler," IEEE Transactions on

Cornputer-Aided Design, vol. CAD-6, pp. 259-269, Mar. 1987.

[12] Baher S. Haroun and Mohamed 1, E h r y , "Architectural Synthesis for DSP

Silicon CompiIers," IEEE Transactions on Computer-Aided Design, VOL 8, no. 4,

Apr. 1989.

[13] David J. Kolson, Alexandru Nicolau, and N i Dutt, 'Elimination of Redundant

Memory Traffic in High-Level Synsthesis," IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Sysrerns, vol. 15, no. 1 1, pp. 13541364, Nov.

1996

[14] David T. Harper [n, "Block, Multisuide Vector, and FFT Access in Paralle1

Memory Systems," EEE Transactions on Parallel and Dismiuted Systerns, vol. 2,

no. 1, pp. 43-5 1, Jan. 1991.

[15] David T. Harper III and D. A. Lhebarger, "Storage Schemes for Efficient

Computation of Radix 2 FFï in a Machine with Parallel mernories," Proceedings

1988 International Conference on Parallel Rocessing, pp. 422-425, 1988.

[1 6 1 David T. Harper III, "Address Transformations to Increase Mernory Performance,"

Proceedings 1989 International Conference on Parallel Processing, pp. 1237- 124 1,

www.manaraa.com

[17] Jan Vanhoof, Karl Van Rompaey, Ivao Bolsens, Gert Goosens, Hugo De Man,

"High-level Synthesis for Real-- Digital Signai Processing," b '~ lementa t ion of

data structures," pp. 59- 1 15.

[18] Michael F X B - van Swaaij, Frank H.M. Franssen, Francky V.M. Cathoor, Hugo J.

De Man, "Modehg Data Flow and Conuol FIow for DSP System Synthesis", pp.

2 19-259-

[19] Michael E. Wolf and Monica S. Lam, "A Loop Transformation Theory and an

Aigorithm CO Marùmize Parallelism," IEEE Transactions on Parallel and Distributed

Systems, vol. 2, no. 4, pp. 452471, Oct. 1991.

[20] L. MuUin and S. Thibault, "A reduction semantics for array expressions:

the PSI compiler". Technical Report CSC-94-05, Computer Science Department,

University of Missouri-Roila, 1994.

[21] Yvon Savaria, ..., "A 2D 3x3 Convolusion Engine in FPGA," Polytechnique

University of Montreal, EIecaical Engineering Department, 1995

[22] W. Eatherton, J. Kelly, T. Schiefelbein, H. Pottinger, L. R. M u b and R. Ziegler,

"An FPGA Based Recodigurable Coprocessor Board Utilizing Mathematics of

Mays," Computer Science Department, University of Missouri-Rolla. 1994.

1231 H. Pottinger, W. Eatherton, J. Keliy, T. Schiefelbein, L. R. Mullin and R. Ziegler,

"An FPGA Based Reconfigurable Coprocessor Board Utiliung Jhteligenr Data

www.manaraa.com

Prefetching," Computer Science Department, University of Missouri-Roila, 1994.

H. Pottinger, W. Eatherton, J. Kelly, T. Schiefelbein, L. R. Mullin and R. Ziegler,

"Hardware Assists for High Performance Computing Using a Mathematics of

Arrays," Computer Science Department, University of Missouri-Rolla, pp39-45,

1994

G. Chaitin, M.Aushder, A. Cbandra, J. Coocke, M-Hopkins and P. Markstein,

"Register allocation via c o l o ~ g , " Computer Languages, VOL 6, pp. 47-57, Jan.

1981.

F. Chow and J.Henessy, "The Priority-based Coloring approach to register

allocation," ACM Transactions on Programming Languages and systems, vol. 12,

no. 4, pp. 501-536, Oct. 1990.

Thomas Lengauer, 'Combinatoriai Algorithm for Circuit Layout," JO hn WiIe y &

Sons, 1990

Reiner W. Hartenstein, Helmut Reining and Markus Weber, "Design of an Address

Generator," Proceedings 3d Eurochip Workshop on VLSI Design Training,

Grenoble, Sep. 1992

Reiner W. Hartenstein and Helmut Reining, 'Wovel Sequencer Hardware for High-

Speed Signai Processing," Workshop on Design Methologies for Microelectronics,

Srnolenice Castle, Slovakia, Sep. 1995

Reiner W. Hartenstein, Jürgen Becker, Michael Hertz and Ulrich Nageldinger, "A

www.manaraa.com

Novel Sequencer Hardware for Application Specific Computing," Proceedings of

1 1" International Conference on Application-specific Systerns, Architectures and

Processors, ASAP'97, Zurich, Switzerland, Jul. 1997

[3 1] Reiner W. Hartenstein, Jiirgen Becker, Michael Hertz and Lnnch Nageldinger, "A

Novel Universal Sequencer Hardware," Proceedings of Fachtagung Architekturen

Von Rechenstemen ARCS'97, Rostock, Germany, Sep. 1997

[32] D. Grant, P. B. Denyer and 1. F ' i y , "Synthesis of Address Generators,"

Proceedings EEE International Conference on Computer Aided Design, Santa

Clara CA, pp. 1 16- 1 19, Nov, 1989

[33] Xilinx, "The Programmable Logic Data Book", 1998.

[34] Reto Zimmermann, "Computer Anthmetic: Principles, Architectures, and VLS 1

Design," Integrated Systerns Laboratory, Swiss Federal Institute of Technology

(ETH), Mar. 16, 1999

1351 Abdelkrim Kamel Oudjida, "High Speed and Very Compact Two's Cornplement

SeriaVParaIlel Multipliers using Xilinx's FPGA," CDTAlMicroelectronics

Laboratory, 1994

[36] Gin-Kou Ma and Fred J. Taylor, "MuItiplier Policies For Digital Signal

Processing," EEE ASSP Magazine, pp.6-20, Jan. 1990

[37] K a d Nouji and Nicolas Demassiewc, "Optimal VLSI Architectures for

Distnbuted Anthmetic-based Aigorithms," ICASSP, 1994

www.manaraa.com

[38] Staniey A. White, "Applications of Disui'buted Anthmetic to Digital Signal

Rocessing: A Tutoriai Ove~ew," IEEE ASSP Magazine, pp. 4-19, Jul, 1989

[39] C. Sidney Burrus, "Digital Filter Suuctures Descnid by Distributed Arithmetic,"

EEE Transactions on Circuits and Systems, vol. CAS-24, no. 12, pp. 674-680,

Dec. 1977

[40] Abraham Pekd and Bede Liu, "A New Hardware realization of Digital Fiiterszl'

IEEE Transactions on Acoustics, Speech and Signal Processing, vo t ASSP-22, no.

6, pp. 456-462, Dec. 1974

[41] Shalhav Zohar, "New Hardware Realization of Nonrecursive Digital Filters," IEEE

Transactions on Cornputers, vol. C-22, no. 4, pp. 328-338, Apr. 1973

[42] Bede Liu, "Effect of F i t e Word Length on the Accuracy of Digital Fiiters - A

Review," EEE Trans. On Circuit Theory, vol CT-18, pp.670-677, Nov. 1974

[43] T. Kaneko, B. Liu, "Accumulation of Round-off Error in Fast Fourier Transfomrs,"

Journal of Ass. Comput. Mach.. vol 17., pp. 637-654, Oct. 1970

[44] David C. Munson Jr., Bede Liu, "Low-Noise Realizations for Narrow-Band

Recursive Digital Filters," EEE Transactions on Acoustics. Speech, and Signal

Rocessing, vol. ASSP-28, no. 1, pp. 41-54. Feb. 1980

[45] Alan V. Oppenheim, Ronald W. Schafer, "Dismete-Time Signal Processing,"

Prentice Hall, 1989

[46] S. Y. Kung, H. J. Whitehouse and T. Kailath. "VLSI and Modem Signal

www.manaraa.com

Processing," 1985

[47] Earl E. Swartzlander, Jr., George Hallnor, "High Speed EFï Processor

Implementation," VLSI Signal Processing, EEE press, pp.27-34, 1984

[48] Mintzer, L., "Large Fms in a single FPGA," Proceedings of ICSPAT 1996

www.manaraa.com

UsefuI URL Resources
ASICs ... the website

hnp://~vwv-ee.eng.hawaii.edd-msmitWASICs/HTMUASICs. hm

Altera Home Page

I h ttp://kwv- altera. corn I
Cryptography Research Home Page

hnp://iuww.cryptography.com/
r

Data Compression Pointers

http://www- in r e m corn/cumpressiorr-pointers. html

Don Lancaster's GURUS LAIR home page

hrrp://immv.tinaja. c o d

1 Ë ~ g ~ o r n e Page

Hamburg VHDL Archive

http.-//tech-mv. informatik. uni-hamburg.dehhdVvhd1. html

1 Hardware Compilation Home Page 1

http://w~vw. iis. ee.etht cWtirnrni 1
1 Mathematics of Arrays and PSI Compiler 1

Mode1 Technology

i

OptiMagic's Programmable Logic (FPGA, CPLD) Jump Station

Reconfigurable Cryptography (A Hardware Compiler for Cryptographic Applications)

htrp://~.pdus~ics.mit.edJ-cananiudProjects/ele58Oahunteup. html

(Al1 the Best of) Spread Spectnun Scene Online

www.manaraa.com

1 Synplicity HomePage

htp:/huww.synplicity. corn

VHDL International Home Page

hrtp://itwv. vhdi.org

VIUF comp.lang.vhdl Archive

hnp:/hhdl. orghi/comp.lang. v W
P

Xilinx Hompage

Xputer Page

htrp://xputers. in formatik uni-k1.ddxputer/indexXxpu~er. html

www.manaraa.com

A. Memory Bank Assignment Exhaustive Search
The program is cailed BANKS, is written in C and is included on the

accompanying diskette in the BANKS folder. The source is caIled BANKS.C and the

executable is BANK3.EX.E. It has been compiled using Microsofi Visual Ci+ 5.0. AU the

project files necessary N e s is aiso included.

A.1. Exhaustive Search C Source Program for 16-point radix-4 FFT

cnar 'Copyright = 'Merno-T Bank Assigament Exhaustive Search for 16-point radix-4 FFT\nœ
'Copyright t c 1 1999 Amal Knailtash (akhailtash@spacebridge. corn) \2\nœ :

* C e f i n e xO-OF-EM;ES 3 2
t à e f i c e NO-OF-NODES 8

struct edge (
inr src-node;

www.manaraa.com

int 6st-node:
in= ban%:

1 eàges [NO-OF-EDGES] ;

s=,mxr node (
iûr inpurs[4J:
inr outputs [4 1 :

1 nodeç [NO-OFJJODES 1 :

vo iC read-edges-&?d-noàes (voià
(
int 5. j;

edges [i 1. src-node = src Ci 1:
edgesfil -dsc-node = dstlil :

I
f o r (i=O; i<NO-OF-NODES; i- 1
{

for (j=O; j 4 ; jt-)
c
nodes[il.inputs[jl = noàe-i-ol~lf0iCjl;
nodes[il .outpucs[j] = node-i-olij [l] [j];

1
\

I

s t - T C t symSol
int Cost:
i x count:
int use&:

1 syAmls[L6j:

voie ini t-symbols-costs (void i
(
ic= i;

for (i=O; ic16: i+-)
r
syubols [il .cos= = symbol,costs [i l :
symbols[i] .count = 0:
symbols[il .used = FALSE:

1
1

symbol-O = edges [nodes [i 1 . outputs [O 1 1 . bank +

edges[nodes[il -0utputsCL11 -bank * 2 +

edges[nodes[il .autputst2! 1 -bank * 4 +
edges[nodes[il -ou+putsl311 .bank * 8;

www.manaraa.com

return cost:
I

void a c i c - i f - E S C ~ r e s s e d f ucid 1

if i W n i t O 1
if (getchO==27)

exit (O 1 :
J

if (kbhit0 1

if ((cn=getcnO)==' ' 1
return TRUE;

else if (ch==27 1
exi~(l) :

else
return FALSE:

1 e lse
re:urr, FALSE:

!

voie report-rime(char 'msg 1
(

St%C'L Lnt -=In;
the-t currenc-time;
sratic char tirne-now[801:

tirne (hcuzzenc-time ;
tm = localcime t hcurrent-the 1 ;
sprint£ [time-now, '%02d:%02d:$02d', un->tm,hoz~~, tm->tm-min. tm->tm-sec 1 :
printf ('%s%s\n', m g . timesow) :

1

void gec-cime (c-ilar 'now 1
(
/ / S t N C t t E l "a;

cime-c current -c ime ;

tirne(¤t,time 1;
/ / tm = localtirne(hctrrrenc-cime 1;
/ / sprintf(now, '%02d:%02d:$OZd', cm->tm-hour, tm->tm-min. tm-xm-sec 1 :
sprintfl now. asctime(~ocaltime~&~~trent~time1 1) ;

1

void main (1
{

www.manaraa.com

-signed long i. start;
int crr-lent-cos=. las=-cos: = 99999 :
znt wort3 ;
FILE 'fp;
int show = TRUE;
char time,now[80] ;

prinrf(Copyright 1 ;
prinzf i 'Press =SC CO exic program. \n'

S P X F co stop/testart àisplaying ine -Tent cost.-.\n\n' 1 :

do c
prizcf('=ter startizg cos: I c hex (O if expioring d l) r ' 1 ;

1 while î scmf ('%xœ, &start) ! = i 1 :

! / report,time('Staxted at ' 1 :
get,tzrie(cime-now 1 ;
printf ('\nStarted ac %s\nD . tke-now 1 :
fprintf(fp, 'Starced ac %s\n'. cime-now 1 ;

{
if (show
else

1

) show = FUSE:
show = T R E :

= calcrrla=s-cos=(&words 1:
-= words:

(
printf('\,-Last = $6d\tCurrent = $6&\tWor& = $d\tSymbol = 0081X\n',

lasc-cost. current-cost, words, i 1 :
fprintf(fp, 'Last $6d\:Chrren: = %od\tWords = %d\t%OBlX\n'.
last-cost, curzent-cost. words, i 1 :

last-cost = current-cost:
1

/ wait-f or-SPACE (1 ; ' /
1

/ / report-tirnef 'Finished at ' 1 ;
get,time(time-now) :

printf ('Finished at %s\n' , cime-naw 1 :
fprintf(fp, 'Finished at %s\nw. tirne-now 1:
fclose (fp 1 :

wair,fo~SPACE('Press SPACE to exit.' 1 ;

A.2. SampIe Output of the Exhaustive Searcb
This is a shorten6 version of the actual file that is included on the accompanied disk.

www.manaraa.com

M a o - c y 3ark ~ s s i g n m e n t Exhacstive Search for 16-point -tadix-4 FFT
Copyright tc) 1999 Amal &ilrash (akhailtash@spacebridge.com)

Started a: Tue M ~ Y 13 09:05:43 1997
Las: =
L a s = =
L a s c =
L a s = =
Las: =
L a s t =
L a s = =
L a s = =
L a s = =
L a s t =
L a s t =
L a s t =
L a s t =
L a s t =
L a s c =
Las: =
L a s t =
L a s = =
. . - -
L a s t =
L a s t =
Las: =
. * . .
Las: =
L a s t =
L a s t =
L a s = =
Las: =
Las: =
L a s t =
L a s t =
L a s t =
L a s t =
L a s = =
L a s t =
- . . -
L d ~ t =
a - . .

L a s t =
L a s t =
L a s t =
L a s t =
L a s t =
L a S c =
Las: =
L a s t =
L a s t =
Las= =
Las: =
L a s c =
Las: =
L a s t =
LdSC =
L a s c =
L a s t =
L a s t =
L a s c =
L a s c =
L a s c =
L a s c =
L a s = =
L a s c =
L a s c =
Las: =
L a s c =
L a s t =
Las: =

C u r r e n t =
Current =
Current =
current =
CUrrett'L =
-en= =
Currenc =
Current =
k-zen: =
Current =
current =
C u r r e n c =
Cu,rrenc =
Cufrenf =
Currenc =
C u r r e n t =
Cirrrenc =
Curre-nt =

C u r r e n : =
C u r r e n c =
Current =

Cufrent =
Curreric =
C u r r e z x =
C u r r e n c =
c u r r e r r c =
Chrrent =
Current =
Currenc =
Current =
Current =
C u r - r e m =
C u , r t e n t =

Curfent =
Curzezt =
C u r r e n t =
C u z r e z i t =
C u r r e n r =
Current =
Cuzrre rz t =
Curfent =
CLlrreLlt =
C u z r e n t =
C u r r e = t =
C u r r e n t =
C u r r e n t =
Curre.nt =
Cu=rrenc =
curent =
C u z r e n t =
Cur=enc =
Current =
C U f r M t =
C U m M t =
Current =
Current =
C u x r e n t =
C u r r e n t =
Current =
Cu-~enc =
C u r r e n t =
Current =

W o r d s = I
words = 2
W o r d s = 3
W o r & = 3
W o r d s = 3
W o r d s = 3
W o r à ç = 3
words = 3
W o r & = 3
words = 3
W o r à s = 3
W o r à s = 3
W o r d s = 3
W o r à s = 3
words = 3
W o r d s = 3
W o r d s = 3
waros = 2

W o r d s = 4
wo-tds = 4
worcis = 5

W o r d s = 4
W o r d s = 4
W o r à s = 4
W o r d s = 4
W o r d s = 4
W o r k = 4
W o r à s = S
W o r d s = S
woràs = S
W o r - = 4
woràs = 4
W o r & = 3

W o r d s = 3

words = 2
wozds = 2
W o r d s = 2
W o r c i s = 2
W o r d s = 2
W o r d s = 2
W o r d s = 2
W o r & = 2
W o r d s = 2
W o r d s = 2
W o r d s = 2
W o r d ç = 2
W o r â s = 2
W o r d s = 2
W o r d ç = 2
W o r d s = 2
W o r d s = 2
W o r d s = 2
W o r d s = 2
W o r d s = 2
W o r d s = 2
W o r d s = 2
W o r d s = 2
W o r d s = 2
W o r d s = 2
W o r d s = 2
W o r d s = 2
words = 2
W o r d s = 2

Symbol = 00000000
Synbol = 00000C0l
Symbol = 00000003
Çymbol = 00000005
Symbol = 00000006
Symbol = 00000007
Symbol = 00000009
Symbol = OOOOOOOA
Symbol = OOOOOOOB
S m ! . = OOOOOOOC
çymbol = OOOOOOOD
Çymbol = 0000000E
Symbol = OOOOOOOF
Symbol = 00000011
S p b o l = 00000012
Çymbol = 00000053
Symbol = 00000032
S m i = 00000033

symbol
-1
Symbol
Symbol
Symbol
s-1
s-1
Çymbol
Çymbol
Çymbol
symbar
Çymbol

Finished a t Thu May 15 15 : 0 3 : 18 1997

www.manaraa.com

B. Program to Generafe the ILP Source File for Arbitrary FFT
The program is compiled using the Microsofi Visual C++ v5.O.

B.1. Program (GILP-FFT-C) for Generating Bank Assignment ILP, arbitrary FFT

char 'Copyright = 'ILP Generator for radix-2 FPT\n0
'Copyright I C) 1999 Amaï EChaiLtash (akhailtash8çpacebridge.~omI\n\n':

char wUsageYsg = 'Usage: GILP-FFT cnumber-of-pointsw cra- clevels>\n'
rriribez,ofgoints : is the number of points in che FF?-\n'
--a& : is the .W raaix.\n'
levels : is the number of ieveis in rhe grapri-\no:

in= N. / * Number of poizts '/
R. / * R a d i x ' /
L. / * Levers * /
3. ," Nunber cf merno-y 'knks " /
1. / ' N u n b e r of iteretfons '/
5. / * N h e r of edges * /
S. / * NuInber of symbols '/
P: / * * /

void prict-header(void

void prinr-f f t-data (void)

(
inc i. r. e:

/ / i n t "wi;

p r i n t f ("SETS\nW
W (I . El Writer's Iteration number\n /\no 1 :

for(i=O; ici; i+-
C
prin=f(' %2d. (O . 5) :
for (r = O ; r c R ; r++ 1
C

www.manaraa.com

e = i * R - r :
printf(' I i4dBs'. e. r < R - 1 ? ',' : ' 1 ' 1 ;

/ / w i [i] [rl = e:
1
printf ('\no 1 :

1
princf(' / \ n g 1 :

i fde f DEBUG
/ / f o r (i = G ; i<I: i-)

/ / (
/ / f o r (r=O; r < R : r-+
/; (
/ ; p r i z t f i ' w 1 (% 2 à . % 2 d l = %2d '. i, r, wiiil [r l 1 :
/ / 1
/ / printf ('\ri' 1 ;
/ / ;
U endi f
printf (' RI (J, E) ~eader's Iceracion number\n /\n' 1 :
f o r (F=O; i<I; i--)

{
prin:f(' %2C- (* . i) :

f o r { r=û; r c X : Z-)

r
if (i c (N / R) 1
e = i - R + r - E / 2 ;

eise
e = (1 1 2 1 * z + i - (1 / 2) ;

pzizzfl '%4d%sœ, e . r c R - 1 3 '; : ' 1 ' 1 :

void print-table(void 1
(
int r, S. i. b;
char buf[l61. symCl6l. str[21 = O?';

www.manaraa.com

printf(' S C '. buf[iI 1 :
s;r[Of = buf [il;

www.manaraa.com

for (b=B-1: b>O : b--)
printf(' BAMCBAMCIS-$d[S. 6) = 1 S (BITS (S. BI EQ %dl ;\no. b, b 1 r

free(banks 1 ;
£ ree (sym-cosc 1 :
for(s=O; s<S; s-- 1
free(sym-tabisl 1;

f ree (sym-tab 1 r
1

'VARlkSLES\n'
~,x(I, S) iirice at iteration 1 is assiq-,ed symWl S\='

' R,X(I. Ç) R e a d at itera~ion 1 is a s s i ~ e d . Symbor S\z' - w-SIM(S) 'local numbez of each symbol for wzites\nœ - x,Sm(S) Total numSez of each sjmbol for reads\no
W - S m ç Total write çymbols\n'
R-SWS Total readçymbols\n'

O W-COST Cost of write symbols\n'
R-COST Cast of read symbals\n'
COST Total cost\n" - ;\n\n0

'BINARY VARIABLES W-X. R,Y. W - W . R-ÇYM ; \no
'INTEGER VARIABLES W-SYMS. R-SYMS ;\n\nw
'EDGE,EXTS(E. 1. J. BI. BJ) =YESSYIJI(I, El S R I (J . F1 $ '
'9W(BI. E) $ BR(BJ, El :\n\ng
.**. ****t*ttt~*******t***************t***********************\~~

' * Canstraints & objective Eunction (Equations)\n'
I * * . * . . * * * * * * * * . * * * * * * * * * * * t t * * * * t * * * * . * * * * * * * * * *~ *~* * * * * * * * * \cm

'EQUATIONS\n' - CONSl(1) Allow only one write symbol at iteration I\n'
CONS2 (1) Aïlow only one read m l a= ireration I\no
CONS3a(S) Calalate total number of each symbol for writes\nœ

' CONS3b(S) Calculate total n-r of each s y m b o l for writes\nœ
' CONS4a(S) Calculate total number of each symbol for reaàs\c'
' CONSQb(S) Calculate total number of each symbol for reads\r-'
' CONS5 Cal-late tocal 3-r of mite symbols\n'

CONS6 Calculate tocal number of read çymbols\n'
' CONS? Calculace cosr of m i t e symbols\n'

CONS8 ~alcu'ate cosc of read symSols\r,- 1 ;

for (b=l; bcB; b-)
princf(' CONS%d%s (E. 1. J. BI. SJ1 Force the bit to be '%da c n "

'corresponiiing read of a wrice\sœ , b 8 . (b==i?' ' : ") , b :

Our objective (cost) function\nœ

print£('CONS%~(E. 1, J. BI, BJ) 5 (EDGE-EXTS(E, 1. J. BI. 3J) --\no. b-8 1:
princfi ' SUM(S, W-X(1. S1wBANKBANKIS-%d(S. BI)) =E= SUM(S. R,X(J, SI"

'BANK-Is%d (S. BJ) 1 ;\n\no, b, b 1 ;
1

www.manaraa.com

- *\a-
- w ~ * * * * * * ~ * * * * * * . l . * * * * * * . ~ * t * * t * * t * * ~ ~ * * t ~ * * * f * * * ~ t * t I ~ * * 1 * * \ ~ C ~

'MODE.. Banks / ALL / ; \a'
'OPTIONS LIMROW=10000. LIkCOL=100, RESLIM=90000000, ITERtIM=1000C000 : \no
'SOLVE Banks USIKG KIP KI'PJIEiIZïNG COST ;\no 1 ;

1

void usage(void
i
fprietf(stderr. UsageMsg 1 ;
@xi=(l 1:

1

int main(inc argc, char 'argvl])

(
if I argc==l 1 (

fprintf(stderr, 'Number of poinrs --> ' 1:
sc=f ('%dg, &N 1 r
f p r i c r f (stderr. 'FFT R a b --> - 1 ;
scaf ('%do, &R 1 :
fprizcf (stderr. ' N h r of ievels --) ' f r
scar.f (' S d - , &L 1 ;
fpri~tf (s:de-T. 'Kernory Banks --> -) ;
scanf ('%d', &B 1 ;

1 else if targc != 5) C
usage (1 :

1 e lse (
N = atoi (argvCll) ;
R = atoi (argvi21 1 ;
L = acoi(arqvt3! 1 ;
9 = atoi (argv[41) :

1

. -
l r (N != (int)pow(R. LI {

fprincfc stderr, 'Invalid ntmbers, impossible!\n' 1 ;
exit(l1;

?

B.2. ILP Source (FE'T-16-2GMS) for 16-point radUr-2 FFT, Two Memory Banks
STITLE Assignment of m e m o r y h?ks to variables
SOFFUPPER

- Copyright [c) 1999 Amal Khailtash
* (akhail rash8spacebridge. corn)
I I * * * w . . * * I w * * * * * * * C * * ~ * * * * * * * 1 * * * * * * t * * ~ * * * * * * * * * * * * * * * * * * *

* Indices (sets)
..***. * * * * ~ * ~ ~ ~ ~ ~ * * * * * ~ * * * * * * * ~ * ~ * * ~ o * * * * * * * * * * * * * * * * v * * * * * *

SETS
I Icerration number / O * 7 /
s Syrnbol / 0 * 1 5 /
3 Bit index / 0 ' 3 /
E Edge index / 0 * 3 1 /

a 1 A . S (1. JI ;
ALIAS (B, BI. BJ) ;

www.manaraa.com

TAELL:
BITS (S. 91 binary equivalents of symbol S

SYM-COST (SI Cosc of each symbol
/

0=2. 1=1, 2=1. 3=0.
8=1, 9=0, 10=0, 11=1.

/
mr~i-~s-l(s. 8) 1s one for bank 1

BANK,IS,~(S, BI = 1 S (BITStS. BI

www.manaraa.com

* Decision variables (vaziàbles)
. * * C l . * * t * * w * * * * * * * * * * * * * * l * * l * * * * * * * * * * " * * * * ~ ' * * * * * * * * * * * *

VARIABLES
w-x(I. S) Write at ireration I is assign& symbol S
2-x (I , S) Read at iteracion f is assigze çymbol S
W-Smrs) Total number of each symbol for writes
R-SYM(S) Total number of each for reads
w - ~ m ç Total write symbols
R - S m To=al read çym'ools
'rr_COST Cosc of write symbals
R-COSY C O S ~ O ~ readsymbols
COSY Total cos=

EQUXIONS
c0r:s: (1 1
CONS2 (1)
COXS3a (S
COh'S3b(S)
COXS4a(S)
COXS4b [S 1
coxs 5
CONS 6
CONS7
CONS8
CONS9 (E.
Oa32cT

CONSl(1) ..
CONS2(1) ..
CONS3a(S) . .
CONS3b(S) . .
COXS4a (SI . .
CONS4b(S) . .
CONS 5 . .
CONS6 . .
CONS7 - .
coma - .

;rllow only one =ire -1 at iteration 1
Allow o ~ l y one reaà symiJol at iceration I
Calculate total number of each symbol for writes
Calculate total nvxnber of each symbol for wrices
Calculate total c h e r of each symbol f o r reads
Calculate total cirmber of each symbol for readç
Calculate cotal number of write symbol.5
Calculate total number of read symbols
Calculate cost of write -1s
Calculate cost of read çymbols
1. J, 91, BJ) Force the bxt to be '1' on corresporiding read of a mite
Our objective (cost) funccion

www.manaraa.com

C. Program to Generafe F R Twiddle Factors
The program is compiled usine the Microsoft Visual Ct+ vS.0.

C.1. C Source Program TWIDDLE.C

char 'Copyright = 'Twiddle Factor m D L Generacor for radur-2 FFT\ag
'Copyright (c) 1999 Amal Khailtash (akhailcash@spac~ridgeecami\n\n~;

char 'UsageMsq = 'Usage: TîCDCLE a>\c'
n: of E'FT points [power of 2)\n-;

inr maira(icc argc, char 'argvi])

f
int k. n. m;
àouble w-real , w-imag r
int w-real-scaled. w-imag-scaled;
inc *me *wi;

fprin=f(stàerr. Copyright 1 :

if (argc!=2 1
usage (1 :

Wifdef DEBUG
printf ('%02d: w-r: %9.6f (%4& (%OZXI \tw-i: $9 .6£ (%4d) (%02Xl \n' . k.

w-real. w-real-scaled. wrlkI,
w-imag. w-hg-scaled. wi [kl 1 ;

Y endi f
1

printf(W ---
\no 1 ;
pr+cfi " -- C o n s t m t middle Facrars\nw 1 ;
printf(' ---

\ = O 1 ;
printf (' t y p e LookupTable is array(0 to %dl of std-logic-vector (7 downco 0) : hg. m-1

) :
princfl ' constant W R : LookupTable := (\no 1 ;

www.manaraa.com

C.2. Sample Output of the Program for a 256-point FFT
Twiddle F a c t o r W L C e n e r a t o r for radix-2 FFT
Copyright (cl 1999 Amal I c h a i l t a s h (a~ailtaçh@spacebridgeecom1

-- C o n s t a z z t Twiddle ?ac=ors

cype L o o k t i p T a S i e i s array (0 CO 1 2 7 1 of scd-logic-vector (7 downto O :
conscmc WR : LookupTable := t

X'7F'. X'7E'. X'7E'. X'7E' , X'7E'. X'7E'. X97D', X'7D' .
X'7C'. X073', X'79'. X'7A'. X'79". X'78'. X'77'. X'76'.
~ " 7 5 ' . X-74" . X'72-, ~ ' 7 1 ' . ~ ' 7 0 ' . X'6E'. X'6C0, X'6B'.
Xg69', X - 6 7 - . X'66'. X'64'. X'62'. X'6O9, X'SE', X'SB'.
X'59'. X-57 ' . X'55'. Xg52', X'SO', X'4E'. X'4Bg, X'49'.
X'46". X'43'. X-41'. X'3E'. X03E'. X-39'. X'36'. X-33' .
X'30'. Xg2D', X'2A0, Xg27'. X'24'. X'21'. X' lE' , X'lB',
X m 1 8 ^ , X'15'. X'IS'. X'OF', X'OC'. X'09'. X'06'. X'03".
X'OO', X'FD", X'FA', X'F7'. X'F4'. X'F1'. X'EE', X'%'.
X'E8'. X"E5'. X ' S ' , X'DF', X'DC'. X9D9', X'D6'. XgD3',
X'DO', X'CD', X'CA', XœC7', X'CS', X'C2'. X'BF'. X'3D'.
X'BA'. X'B7'. X035', X'B2'. X'BO', X'AE', X'AB', X'A9'.
X'A7'. X'AS", X'A2'. X'AO'. Xm9E', X'9C'. X'9A'. X'99'.
x œ v - , X-95 ' . x - 9 4 0 , X - 9 2 - , X - o ~ - . x-ea-, x-er-. x-ec-,
Xm8B', X '8Aœ, X'89'. X'88'. X'87'. X'86'. X-85'. X'85'.
X"84' . X'83'. X W a 3 ' , X082', X'82'. X'82'. X082'. X-82'

I :

c o n s t a r r c WI : LookupTable := (
X'OO'. X'FD', X'FA', X'F7' . X'FQ',
X'E8' . X'ES' . X0E2', X'DF', X'DC'.
X'DO', X'CD', X'CA', X'C7'. %'Cs',
X'BA' , X'B7'. X'BS', X'B2'. X'BO'.
X'A7'. X'AS'. X'A2'. X'AO', X'9E'.
xg97 ' . X-95'. X'94'. Xg92', X'90g,
X'8B0. Xg8A', X-89'. X'88'. %-87'.
X'84'. Xg83', Xœ83', X'82'. X'82'.
X œ 8 1 ' , X'82'. Xœ82', X'82'. X'82'.
Xm84', X'85'. X'85". Xg86". X087',
X'8B'. X08C', X08E', X'8F'. X'90'.
X'97'. X'99'. X'9AW, Xg9C'. X'9Eo,
X0A7', X'Ag', X'AB' , X'AE' . %'Bo'.
X'BA', X'BD', X'BF', X'CS', X'CS'.
X'DO', X'D3'. XœD6", X'D9'. X ' X ' ,
X'E8'. X'EB', X'EE', X'Fl', X'F4'.

1 :

X'F1' ,
X'D9'.
X'C2'.
X'AE' ,
X'9C'.
X'BF' ,
X-86'.
X982',
X-82'.
X'88'.
X'92',
X'AO ' .
X'BS ' .
X'C7 ' ,
X'DF' ,
X'F7'.

X'EE' , X'EB' ,
X'D6'. X'D3 " ,
X'BF' , X'BD' .
X'AB' , XmA9',
X'9A'. X'99',
X'8E'. X'8C'.
X -85 - , X085',
XgB2', X'82' ,
X'83'. X'83'.
X'89". X'8A'.
X'94'. X'95'.
XœA2', X'AS' .
X'B5' , X'B7" .
X'CA' . X'CD' .
X"E2', X'ES' .
X'FA'. X'FD'

www.manaraa.com

D. C Source File Used to ûesign a Hardware Addreas Generator
The program is compiled using the Mimsoft Visual C++ v5.0.

D.1. C Source File ADDGENC
#include ccocio.h>
ainclude <ma:h.h>
sinclude <scdarg.n>
tinclude <stdio.h>
linclude Cstdlib .b
#incluàe <string.h>

Ydefine TEST-I
//#Cefixe TEST-2
!/*defice TEST-3
!r#Cefi i=e TEST-4

nlfdef TEST-I
aefine SIZf (256'256)
t endi f
#ifdef TEST-2
define SIZE (256*256)
n enài f
t i f de f TEST-3
t define SIZE (12)
#endi f

#define FALSE (O==L)
+def ine TRUE (1==1)

typedef unsigned char BYTE:

ildefine sA!&Es 8
idef ine POWZR ((double) LoglO ((double) SAKPLES) /logla(le) 2 -0) 1

i Ede f TEST-1
void ger.-adüressesl(void 1
{
int x. y. i . j. X. Y;

block height = 16 rows

block width = 16 columns

do 4 times

every 2r-d l i n e

every 2nd pixel

printf(~~~~~~~~~~~~~~~~~~~~~~~~~, Y, X , i, y. x 1 ;
ad&ess[j] = x + y - X + Y;
printf('\tj=%d. add=%d\nm, j, address[jl 1 :

j++;
getch (1 :

www.manaraa.com

i fàe f TEST-2
vo ia gez-addresses21 voici 1
(

53: x , y , j. X. Y;
in= ra-qd[l = < 0, 0, 1, O, 1, I. 0. O . 0. 0. 1. 0. I* 1. 0. 1 1:

void get4aàdress-bits(int bic 1
(
ir,: F ;

int bits-equal(int 'bit, i n t lasc 1
(
inr i:
int equal;

'bit = add-bicl0l;
equal = TRE;
f o r (i=l; ie last; i- 1
(
if (aaà-~it[i-11 !=add-bitiil 1 (

'bit = -1:
equal = FALSE;
break;

1
1

www.manaraa.com

int halves-equai(int firsr, int last 1
r
ict i ;
int equal:

equal = TRUZ;
f o r (i=first; iclast; i-- 1
{

4 P -- (add,bIt[i]!=aàd,bitlrasc-i! 1 C
equal = FALSE:
break:

1

return equal:
i

return Inverse:
1

void semi-ranàom,çequence(aYTE 'list. int size. char 'mappicg
{
int i, j. c;
char buf fer(l02C] :
; "-
A-.L f i r s c l ;
in: firs=2:

/ / printf ('Seni-==dom Sequence. . . \no 1 ;

mapping/Ol = ' \ O e ;
firscl = TRL'Z:
C = C ;
f o r (==O: i c s i z e : i-- 1 {
if (lis=[i]==l) {

C I - ;
/ / printf ('list[%d] =%d\n-. 2 , list[il 1 ;

if (!firstl) strcac(mapping, ' t\c " 1 ;
firsc2 = TRUE;
for (j = O ; j<(int) (log10 (s ize l /log10 (2) 1 ; j++ 1 C

if (!first2) strcatc mapping. '.' 1 ;
sprincf(buffer. 'CI%dl', j 1:
strcat (mapping , buffer 1 :
if ((i & (0x1 cc j))==O 1 strcat(mapping, '^' 1 :
if (first2) first2 = FALSE:

1
if (firstl) firstl = FALSE:

1

void -th-address(BYTZ 'list, i n t size. char 'mapping 1
{
int bic, last. m;

/ / int bit. equal, iast;
char new-pping [10'10241:

www.manaraa.com

/ / pr in t f (-Synch Address.. - \n' 1 ;
f a s t = size:
do (

i f (bits--al(& b i t , last 1 (
sprincf (-lapping. '%à'. bic i ;
return:

1
last /= 2:

] wniie(n a l v e s - m a l (0. last 1 1;
/ / 1 wnile(halves,equal(0. l a s t) && las t>O E:

i f (halves-inverse(0. l a s r) C
m = (i n r) (l o g l 0 (l a s t) / logIO(2) 1 :
i f (halves-equal(0. last/2 i 1 (

sp r i c t f (mapping. '%sC[$dl', (lisc[Ol==O) ?": 'sot ', rn 1 :
1 e l s e C
syn-A-address (l i s t , l a s t . new-mpping 1 :
s p r i n = f (mapping. 'C[%dl xor (%s)'. m. new-mpping) ;

i
j e l s e (
seni-r=dcrn,sequence (lis=, Las:-2, ziew-papp3g 1 :

/ / s p r i n t f (adpping, ' ? ? L w 1 :
s p r r n t f (ciapping, new-mpping) :

i
1

voie t race (char 'S. . . . 1

va-List args;

va-star t (args. s 1 :
vprintf (s, a rgs 1 :
va--d(args 1 :

R endi f
1

- B i c reverse the number - Cnange lllOOOOOb CO 00000111b oz vice-versa
~****.**ft*t**.*'~**~..t~~.t...~***t.*****~~.-*-.~-*-'~*~**********..-*.******/

i n t pe,?nute(in= index 1

inc nl . rescl:. loop:

i f (inaex c n l)
concinue:

r e su l t += (i n r) pow ((double) 2.0, (double) loop 1 ;
index -= nl;

1

re turn resu l c :
1

voie Eft-&if0
(

i n c 1, i. j. k;
i n t m. n. o. P:
inc x:

/ / double w:

www.manaraa.com

:.I ooutile zl. w l . 22. w2:

X = O:
m = SAMPLES / 2;
c = 1:

c
ad&essl lx1
adciress2 [x i
aeess3 [x 1
address? lx:
trace(-%a:

i else {
addzessl lx1
adckess2 [xl
address3 fxl
addzess4 [xj
-,race['%d:

1
XI-;

1
trace (-\c' 1 ;
O -= (rn - 2) ;
p -= (m ' 2) :

1
P / = 2:
n -= 2:

i f de f TEST-1
gea-ad&esseslO;

, pr=s=,acàzesses i 1 ;
f o r (i=O: ic16; i-7 1
{
ge tgd&xess-bics (F 1 ;
-th-address (add-bit, SIZE. trançform 1 ;
printf(' '%se \c==> adbit %d\nw, cransform. i 1 ;

1
pr in t f i O \n' :

endi f

t if de f TEST-2
gen-addresses2 (:
f o r (i=O; ici6; i+t)

{
gecaddress-bi ts (i 1 ;
syn ch-address i add-bi t , SIZE, trans form 1 :
p r i n r f (' ' $5 ' \c==> adbic %d\n" . rransfom. i 1 ;

1

i £de f TEST-3
adciress[01 = 0 ; address [11 = 2 ; address [2 1 = 1 : address[31 = 3:
addressi 41 = 0: address [51 = 2 : adeess [61 = 4: addzess [71 = 6:
ad*esS [81 = 0: addzess l 91 = 2; address 110 1 = 4: addressllll = 6;

www.manaraa.com

D.2. Sample #1

D.2. Sample #2

==> aübit 3
==> aâbit 4
==> adbit 5
==> adbit 6
==> adbit 7
==z adbit 8
==w adbit 9
==> adbit 10
==> adbit 11
==> adbit 12
==> adbit 13
==, adbit 1 4

www.manaraa.com

D.2. Sample #3

D.2. Sample #4

www.manaraa.com

www.manaraa.com

www.manaraa.com

entity butterfly is

o-r . ;* . .
. *--

pi. : :n

x-r : out
X-Z : OUK
Y-= : OU=
Y-: : OU=

I r

std,logic,vector(lS downto O);
std-logic-vector(l5 dowrrto O) :
std-logic-vecror(l5 downto 01;
std,logic~veccor (15 downto O 1

enc er.ti:y bctterfly;

component regqipe
generic (

DZPîH : posicive;
W I D S H : posicive

1 :
porc (

reset-2 : ir, sr&-logic:
clock : in std-logic;
ecable : in std-logic;
1 : in std-logic-vector(mDTH-1 downto 01;
c : CL= s ~ à ~ i o g i c ~ v e c ~ o r (KZDTE-I EOK=O O)

J :
enà cornpo-rle.n,t :

compor,enc mulc
generic (

A-WIDTH : positive:
B-WIDTH : positive

I :
port (

reset-n : in std-logic;
clock : in std-logic;
enable : in std-logic:
a : in std-logic-vector(A,WIDTH-1 downco O) ;
b : in std-logic-vector(5-WIDTII-1 downto O) ;
F : out std-logic-vector((~-~~TH-B,~DTCf-~l doWnt0 0)

1 ;
end component:

signal arglus-br : stà-logic-vector(l6 downto O);
signal aiqlus-bi : stà~logic,vector(l6 domtu 0) ;
signal ar-rninus-br : std,logic,vector(l6 downto O);
signal ai-minus-bi : std,logic,vector(l6 downto O) ;

www.manaraa.com

signal po
s imal p l
signal p2
signal p3

: std-logic,veccor(24 dcworo O) ;
: scd,logic~vector(24 d m - C O 0) :
: s~4,logic~veccor (2 4 downtc 0 1 :
: std,logic,vector (24 downto 0) ;

signal p0-minus21 : std,~ogic,vector(25 downca 0) :
signal p2slus-p3 : std,logic,vector (2 5 downto O 1 ;

sigzal w-=,del : std-logic-vecccr(7 downco 0);
sival w-i-del : st~,iogic~vec~or(7 downco 01:

-- The following shoirld De calculaceci:

port m a p l
reseï-n => zesec-c.
clock => clock.

i-mulc2 : mult
generic nap (A_WIDTH=>17. S_WfDTH=>8 1
port map(
resez-n => reset-n,
clock => clock.
enable => =able.
a => ai-minus-bi ,
b => w-r-del.

www.manaraa.com

port map (
=eset-n => reset-n.
clock => cLock.
enable => enable.
a => ar-minüs.
b => w-i-del.
P => p3

1 ;

a=-minus-br <= s x t (a-r. 27 - s x t (b-r, 17 1 :
ai-minus-bi <= s x t (a-i, 17 1 - s x t (b-i, i7 1 :

p0-minusgl c= sxc (PO. 2 6) - s x t (pl. 26 1 :
p 2 s l u s q 3 c= sxt (p2. 2 6) - SX=(p3, 26 1 :

Y-r c= p0-minusql(25 downco 10) :
Y-2 c= p Z j l u s g 3 (25 dowzco 1 0) ;

end if;
end if;

end process:

end architecrur-e =cl;

library ieee;
use ieee-std-logic-1164-all;
use ieee.~td-iogic-~ith.a1I;
use ieee.std,logic-unsimed-all:

encity cf ft1024 is
port (

reset-n : in
clock : in
enable : in

star: : in
bus y : out
done : out

data-in : in
data-out : out

1 ;

std-logic;
std-logic:
std-logic;

std~logic,vecror î 7 downco O 1 ;
std,logic~vectoril5 downto O)

www.manaraa.com

e-?d entity cfftlO24;

architecture rtl of cfft1024 is

resec-n : i-2 std-logic;
clock : in std-logic;
enable : in std-logic;
ad* : out std-logic-vector[WIDTH-1 downto O)

1 :
end coaponezr addrgen-bitrev:

componenc aadrgezx,linear
generfc (WIDTE : positive r
par= (

reset-n : i-? std-logic;
ciock : i22 5 t ~ : w i ~ :
enable : in scd,lagic:
adcïr : out s~~logic~vector (WIDThDTh-1 downto O)

1 :
egù component aàckgen-linearr

component butterfly
Porc (
reset-n
clock
enable
w-r
w-L

a=
a-i
b-r
b-i
x-r
x-i
Y 3
Y 2

1 :

: in
: in
: in
: in
: 2 2 - ;" . A--
: in
: in
: in
: cut
: out
: out
: out

scd-logic;
std-logic:
std-logic;
std-logic-vector (7 downto 0) :
s tà-logic-vector (7 à m t o O 1 ;
std~logic~vector(l5 downto O) ;
srd~logic~veccor (15 downto O ;
st~-logic-vecror (l5 downto O 1 :
std-logic-vectorîl5 c5owr.to O) ;
scd-logic-vector i 15 downco O 1 ;
scd~logic,vector(l5 dounto O) ;
std-logic-vector i 15 downco O ;
std-logic-vector (15 downto O 1

end conponent butterfly;

componezz coctroller
port (
resec-n : in
clock : in
enable : ir,
stazt : in
bilsy : ou=
dace : out
engine-enable : out
k : out
bank0 r-we : out
bank0 i-we : out
banklr-we : out
bankl i-we : out
enable-w-addrgen : out
enable-r-addrgen0 : out
enable-r-addrgenl : out
select-r-addrgen : out
w r i te-sel : out
read-sel : ouc
bank-s el : out
skew-enable : out

1 ;
end component controller:

component mem-bank
part (
clock : in std-logic;

std-logic;
std-lagic:
stà-logic;
s td-logic :
ste-logic:
std-logic;
scd-logic ;
std-logic-vector (8 ciownto O :
std-logic:
std-logic ;
std-logic:
std-logic;
std-logic;
çtd-logic;
std-logic;
std-logic:
std-logic;
std-logic;
std,logic,veccor (1 downto O 1 ;
s td-logic

we : in std-logic:
w-addr : in std_logic,vector (8 downto O) ;

113

www.manaraa.com

w-din : in std-logic-vector(l5 downto O);
r-adàr : in std-logic-veccor(8 dawnto O):
r-douc : out çtd,logic~veccor~iS downto 0)

1 :
end component mem-bdnk:

componenc skew-buffer
port (

reset-n : in stc?_logic:
clock : in std-logic:
enable : in std-logic;
dino : in std-logic,vectoz(l5 do-to 0);
dinl : in std-logic,vector(l5 do-to 01;
dou:0 : out scd~logic~veccor (15 downto 0 1 ;
doutl : out std-logit-vecco=(l5 downto O)

1 ;
end component skew-buffer;

cornpanen: twiddle-facrors
por t [

k : ic çtd-logic-vector [8 downco 0 1 :
w-: : ooc s~d-:~gic-vect~z(7 6rr*u=c O 1 ;
w-i : out scd-logic-vec=ori? oowr,zo OI
;

ezd componec= cwiddle-factors :

-- _-_____--
-- - Regisrered S i g n a l ~
-- ---
signal k : std-logic-vector(8 downto O):

signal engi
signal w-r
signal w- i
signal a-r
signal a-i
sigxal b-r
sigr-ai b-i
signal x-r
signal x-i
sigrial y-r
signal y-i

xe-enable : std-logic;
: st6-logic-vector (7 downto 0 1 ;
: std-logic-vector (7 downto O 1 ;
: std-logic-vector(l5 downto O) ;
: std-logic-vectcr (15 downto 0 :
: sta-logic-veccor l 15 domta 0) ;
: scü-Logic-vector(l5 downto O);
: scd,logic,vector (15 downto O) ;
: std-logic-vecror (15 domto O) r
: sta-logic-vecror t 1 5 downto 0 1 :
: std,logic,vector(l5 downto O);

signai skew-enable : std-logic;

signal data-real0 : scd,iogic,vector(l5 downto O) ;
signal data-reall : std-logic-vector(l5 aowcro O) ;
sig?.al c?ata,-gO : scd~logic~veccortL5 dowrxo 0);
signal data-magl : std,logic,vector (15 downto 0) :

signal bank0t-we : std-iogic;
s i -.a 1 bank0 r-w-addr : scd~logic~vector (8 downto O) ;
signal bank0r-w,din : std-logic-vecror (15 downto O 1 ;
simal bank0r-r-addr : std~logic~vector (8 downto O 1 ;
signal bank0r-r-dout : std-logic,vector(l5 downco 01 ;

signal bank0i-we : std-logic;
signal bank0i-w-addr : std-logic,veccor[8 downto O):
signal. banJcOl-w_din : sc~logic,vector (15 downco 0) ;
signal bank0i-r-ad* : std-logic-vector (8 downto O) ;
signal bank0i-r-dout : std-logic,veccor (15 downto O 1 :

s ignal bankl r-we : std-logic:
signal banklr-w-ad* : stdJogic,vector (8 downro O) ;
signal banklr-w-din : std-logic,vector(i5 downto O) ;
signal banklr-r-addr : std-logic-vector (8 downto O 1 :
signal banklz-r-dout : scd,logic~vector (15 downto O) :

signal bankli-we : std-logic;
signal bankl i-w-addr : std,logic,vector(8 downto O) ;

www.manaraa.com

signal bazkli-w-&n : scd-logic-vector(l5 downco 0) :
signal bankli-r-ad* : scd-logic-vector t 8 àownto O :
signal bankli-r-douc : st~logic,vector(15 downto O) ;

s igral wri te-adüress : std-logic,vector(8 downto 0);
siwal eranle-w-adàrgen : st6-iogic;

signal read-address : std-logic,veccor(8 downto O) :
signal read-address0 : std-logic,vector(8 dowcco O):
signal read-addressl : scd-logic,vector(8 downco O) :
signal enable-r-addrgen0 : std-logic;
signal enable-r-adcirgenL : std-logic:
signai select-r-addzga : scd-logzc :

signal write-sel : std-logic:
signal read-sel : SC&-logic;
signal bank-sel : std,logic,vector(l downto O):

read-adclrgen-lin : aockgen-linear
generic map(WIDTH=s9)

port map (
reset-n => reset-r.,
clock => clock.
e n d l e => enable-r-addrge-0.
aàdr => read-address0

1 :

read-addrgen-br : addrgaq-bi c c r
generic mapi WIDTK=s9 1
porc map(

=eset-" =w reset-n.
clock => clock.
enable => enable-r-addrgenl ,
ad& => read-addressl

1 :

engine: butterfly
port map (

reset-n => reset-n.
d o c k => clock.
enable => engine-enable,
w-r => w-r.
w-i => w-1.
a-= => a-r.
a-L => a-1.
b-r => b-r,
b-i => b-i.
x-T => X-r.
x-i => X-1.
Y-= => y-r.
y-i => y-i

1 :

fft-controller: controller
port map (

resec-n => resec-n.
clock => clock,
enable => enable.
scaxf => stazc,
 bus^ => busy,
done => done,

www.manaraa.com

www.manaraa.com

twiddles : tuiddie-f accors
port map (

k => k.
w-r => w-r.
w-1. => w-1

1 ;

process(reset-c, clock 1
begin

if (reset,n='O ' then
ParkOr-w-Cin c= (others=> ' O ' 1 ;
.&O i-w-din s = lothers=> ' O ' 1 ;
h,?klr-wwdin c= (ochers=>'O'):
baakri-w-àin c= (ochers=>'O'):

àa=a-out c= (others=w O ' ;
elsif [rlslng,eÜge(clock) 1 cher-

if i enabLe=' l') then

if (cite-sel='Om) &en
bank0r-wW&n c= (zero8 & dard-in) ;
bank0i-w-din c= (zero8 & data-in);
Darkiz,w-c2n c= (zero8 & &ta-in) ;

bankli-w-din <= (zero8 & data-in) ;
else
ba-akOr-w-cia c= data-real0 ;
ba,?jcOi-w-din c= dard-imago:
banklr-w-ciin c= data-reall;
bankli-w-din <= data-inagl;

end if;

data-ou= c= (others=> 'O ' :
if (rea&sel='l') then
case bank-sel is
when ' 00 ' =w
data-ouc c= bank0r-r-dout;

when '01' =>
àaca-out c= bank0i-r-dout;

when '10' =w
data-ouc c= Mir-r-dout;

when '11' =w
data-ou t c= bankli-r-dout :

when ochers => nu21;
end case;

end if;

end if;
end if;

www.manaraa.com

er.d process:

- -
l ibra-sr ieee:
cse ieee.std-logic,ll64.all;
cse ieee.st&logic,arith-alL:
use ieee.sc&iogic,cns:gned.all:

encicy controller is
porc (

reset-r, : in
clock : in
enable : in

: in
: out
: out

engine-enable : out
k : out

bb.rk0 r-we : out
ba,-r)cO i-we : out
bëmkLr-we : out
bankl i w e : out

enable-w-adàzgk? : OU:
enable-raddrgenO : out
enable-r-addrgal : out
select-r-addrgen : out

-4 , , - &e-sel : out
reac-sel : out
bank-sel : out

skew-enable : out
1 :

end entity controller;

scd-logic;
std-logic-vecror(8 Bownto O):

std-logic;
std-logic:
scd-logic:
std-logic:

std-logic;
std-logic;
scd-logic ;
std-logic;

scd-logic:
SCCI-logic;
std-logic-vector (1 downco O 1 :

scd-logic

archi=ectce rtl of conrroller is

-- - Componenet Declarations
companenc regqipe-single
generic (

D r m : positive
1 ;
port (

resec-n : in stci-logic:
ckck : ic std-10gic;
enable : in std-logic;
i : in std-logic:
O : our std-logic

1 :
end component;

-- - Constarxts h New Types -- ----_--
constanc N-WINTS : integer := 1024:
cons tant N-DATA : integer := N-POIKTS'2;
cons t m t N-DATA-DIV;! : integer := N_DATA/2;
constant NODES-PER-LEVEL : integer := N,POINTS/Z;

- - conscant L-S : iateger := ~o~~(N-POINTS):
conscanc LEVELS : inreger := 10:
constant NODES : inceger : = LEVELS 'NODES-Pm-LEVfL ;

type ControllerScateType is (IDLE,

www.manaraa.com

WR-DOR. WR-DOI, WR-DIR. Pm-DLI.
START~PROCESS. PROCESS-NODE. FLUSH.
RD-DOX. RDJOI, RD-DTR. RD_DlI,
DONE-PROCESS 1 :

attribute syn-encoeng of ControllerStateType r cype is 'onehot';
signal ctrlgs, ctrl-ns : ConcrollerStateType:
a=rribute syn_state-machine of ctrlqs : signai is C r u e :

signal enable-w-addrgen-int O : st&-logic:
signal enable-w-adàrgen-=nt> : std-logic:
signal enable-w-addrgerr,inti-del : std-logic;

signal '&Or-weO
signal bark0i-we0
signal banklr-ne0
s = m a l baz?kli,weO

sigr.al Bk?kOrwel
sigr-al 'DanjcOi-weL
signai banklrwei
sigxal barddi-wel

signal backOr-wel-àel
signal bank0i-wel-del
signal banklrwel-àel
signal bar>~li-wel-del

: std-logic;
: sce-logic:
: 5x5-logic:
: scd,logic:

: sta-logic:
: std-logic:
: std-logic:
: std-logic:

signal skewenable-int : sccl,logic:

signal data-counc
signal node-counc
signal flush-count
simal done-int

: std-logic,vector(10 downto O);
: scd_logic,vector(12 downco 01;
: sed-logic,vector (3 downto O) ;
: std-logic;

%pipe-bardcor-we: reggipe-single
generic map i DEPTH=212 1
porc map (
reset-n => reset-n.
clock => clock.
enable => enable.
i => bank0r-wel.
O => baak0 r-wel-del

1 ;

ipipe-bank0 i-we : reggipe-single
generic map (DEPTH=>12
port map (

resec-n => reset-n.
clock => clock.
enable => enable.
, => bar-k0 i-wel ,
O => bank0i-wei-del

1 :

isipe-banklr-we: reggipe-single
generic map (DEPTH=>l2
port map (

www.manaraa.com

i q i p e - W l i w e : reggipe-single
genezic map (DEPTti=>l2 1
port map (

reset-n => reset-n.
clock => clock.
enable => enable.
i => Mli-wel.
O => bankli-wel-del

1 :

iqipe-skew-ecable: reg_pipe,single
generic map (DEPTH=>iO 1
porc map (

reset-n => reset-n.
clock => clock,
enable =w enable,
I => skew-enable-in:,
O => skew-enable

1 ;

busy
k

<= '0' when(ctrlgs=IDLE 1 else '1':
c= shi (noàe-count (8 daw~ro 0 1 . node-courit (12 downro 9 1 ;

enajle-w-adegeq c= enable-w-adkgen-intO o r enable-w-a6&gen-intI-OeL;
bbz0 r-we c= bank0r-ue0 or banJc0r-wel-del;
bankO i w e c= bank0i-we0 or bank0i-wel-del;
b-kl r w e c= Mir-we0 or Wlr-wel-del:
bazkl i-we <= bankli-we0 or barddi-wel-àel;

sync: process (reset-r,, clock)
begir,

if (resec-n='0 ' 1 &en
ào?,e,inr C= '0':
done <= '0.;
da ta-count c= (others=> ' O ' 1 ;
node-COL? t c= (others=> ' O ' 1 ;

bank0r-we0
bankOiwe0
barkl r-we 0
bankl iweO

www.manaraa.com

case ctzlgs is
whe- IDLE =>
e-zdble-r-aâdrge-O <= '0.
select-r-addrger, c= '0';
data-count <= (agaers=> ' O ') ;
node-count c= (o-ezs=w'O') ;
f lush-count <= (others=w'O') ;

when W D O R =>
wrL te-sel C= ' O * ;
bank0r-we0 <= .la;
data-count <= data-coi;nc + ' I ' ;

when WR-DI1 =>
cite-sel C= ' 0 ' ;
bankli-we0 C= '1.;
data-count C= data-cowc + '1' ;
enable-w-addrger.-incO c= ' I - ;

when START-PRQCCSS =>
w r î te-sel C= '1.:
enable-r-addrgen0 c= '1';
=able-r-addzgenl <= ' O ' :
select-r-addrger: c= ' 0 ' :
node-count <= (others=>'O');
if (ctrl,ns=PROCESS-NODE) then
eng i ne-enabl e C= .lm;
skew-enable-int <= -10:

end if;

when PROCESSJïODE =>
enable-w-addrgen-intl c= '1';
bank0r-wel <= -1';
bankOi-wel <= -1';
banklr-wel C= *1*:
Sankli-wef <= *1';

www.manaraa.com

zode-couac <= node-count + '1':

wher, FLUÇH =>
flush-counc <= flush-count - '1';
if (ctrl,ns=~D-~O~) then
done-int .z= . rS:
engine-enable c= '0':
skew-&?ab1 e-int c= ' O ' ;
enable-r-addzge30 <= '0';
select-r-addrge- <= '1';

end if;

when RD-Dl1 =>
read-sel .z= -1.;
ban)c_se7 C= -11':
da ta-count c= data-counc + ' l' :

when ochers =>
daca-count c= :others=>'O'):

end case:

ecà Lf;
en6 iE;

ezà pzocess srilc:

combin: process(crrl-ps, seut. data-count. node-count, flush-count 1
beg i n

case c t r l g s is
when IDLE =>

if (srart='O' 1 the-
ctzl-ns c= IOLE;

e l s e
ctrl-ns c= R D O R :

end if:

when W'R-DOR => ctrl-ns <= WR,DOI;
when WR-DO1 => ctrl-ns <= WR,DlR:

if (~~~~-COUKI~=N-DATA-D~V~-I 1 th-
ctrl-N <= WR-DIR:

else
ctrl-ns c= WR-DOR;

end if;
when WR-DTR => ctrl-ns <= WR-D1I:
when -Dl1 =>
if i daea,count=N-DATA-l 1 then
ctrl-ns c= ST-PROCESS;

else
ctrl-n.5 c= WR-D1R;

end if:

when STkRT-PROCESS =>
ctrl-ns <= PROCESSJODE;

www.manaraa.com

when PROCESS-NODE =w
if (node-count=NODES-1 1 tha
ctrl-ns c= FLUSH:

else
ctzl-ns c= PROCESS-NODE;

end if;

when FLUSH =>
if (flush-count/="llOOœ 1 then

CC"I +, a_= C= FLGSHr
else
ctrl-ris c= RD_DOR:

end if:

when C D O R => ccrl-rs <= RD-DOT:
wkec FEI-DO1 =>

if (data-corrnc=X,DATii-DI=-1 i th=
ctrl-ns c= RD-DIR:

else
cïrl-ns <= RD-DOR;

&?d if:

w h e n DONZ-PROCESS =>
crrl-ns c= IDLE;

whe? others => ctzl-ns c= IDE:
end case;

end process combin;

----------------------__---
- -
------------------_-__---
libra--y ieee;
libra-zy syr-plify;
use i e e e ~ s c d , l o g i c ~ l ~ 6 4 . a l l :
use ieee-std-logic-krirh-all;
use ieee-scd-logic-unsigned-ail;
=se s-plify . a=crinuces - d l :
er-cicy mein-Sa& is
port f

d o c k : in scd-logic;

we : in scd-logic;
w-addr : in std-logic-vector(8 downto O):
w-dir. : in std-logic,veccor(l5 dow~to O):

r-addr : in stc2-logic-vector(8 downto O);
r-dour : ouc scd~logic~vector~L5 downzo 0)

1 :
en6 ectity mm-bank:

architecture rtl of mem-bank is

www.manaraa.com

attribute syn-ramscyle of mem : signal is 'block-rw':

-- * Combinational Assigrments
,, * * * * t f * * * * * t * * * . * . * * * * * n . * * * . * * * * * * * t t * * * * * * * * * * * * . * . * * . * * * * * * * . * * * ~ r . * * * * *

r-dout <= nem(cor,v,integes(r-add~~reg) 1 :

Wrice: process(clock 1
Segir?

if (rising,e&e(clock) 1 chen
if i we='i' 1 theo
men(corw-integer(w,addrI

er.6 if;

r,a&r,reg c= r-acick;
ez?C if;

ecd process wrice;

enc arcniteczure ztl:

libra-y ieee;
libra-ry synplify:
use ieee.std,logic,ll64.ali;
=se ieee.std,logic,ariththali;
cse ieee.std,logic,unsignededall;
--use ieee-std-logic-signe-dll;
use synplify.attrzbutes,alll:

enciry rnult is
generic (

A-WIDTE : positive := 8;
3 - h l ~ m : positive := 8

1 :
porr (

reset,.? : in
clock : in
er.able : in

a : in
b : i n
P : OUC

) ;
end entity mult:

downco O ;
dowr,to 0) ;
downto O)

architecture rtl of mult is

component regqipe-single
generic (

D E m : posirive
1 ;
port i
reset-n : in std-Logic;
clock : in stclogic:
enable : in std-logic:
i : in std-logic;
O : out std-logic

1 :
end component;

www.manaraa.com

signal a-reg : ATYPE;
sigzal b-reg : std-logic,vector(B-mDTH-1 dowrxo 1) ;

signal ppT : st6-logic-veccor(A-~DTH downto O);
signal pp2 : std-logic-veccor(LWIDTi-! down~o O):
signal pp3 : std-logic,vecror (A-W?PM-I downto 0 1 ;
signal pp4 : std~Logic,veccar (k-WII3TH. downto O 1 ;
signal pp5 : std,logic,vector(A-mDTH downto O) ;
signal pp6 : scd,Logic,veccoz~A_WIDTH downto 0 1 ;
sivaai pp7 : std-logic-vector (A-WIDTH dobzto 0) ;

i-bri: for i Fa B - W I ~ - I downto 1 geceraze
F-b: regqipe-single
geceric map (DEFTH=>i
p o r t map (reset,n=>reset,n, c~ock=~clock. enable=>cable, i=>b(i). o=>b-regii)) ;

ezd generate:

-- Calculate the final result
i g O : regqipe-single
generic map (DEPTH=>B-WIDTE-L 1
port map (reset-n=>zesec-n, clock=>clock. enable=>ezable, i=wpp0(0). o=>p(O) 1 ;

i g n : for i in B-WIDTH-2 downto 1 generace
ign: regqipe-single
generic map (DEFTH=>B,WflYïH-1-i 1
porc map (resec,n=>reset,n. clock=~clack, enable=>enable, i=>ppii) (O), o=>p(i) 1 ;

errd generace:

-- Calmlate the firsc multiplication
for i in A-WIDTH-~ downco O loop

ppO[i) c= a(i1 and b(0);
end loop:

-- Calculate the ictermediate results
for i in 1 to 8-WIDTH-1 foap

if i=l then
if (b-reg(i)='l' 1 then
pp(i) <= (ppO (A,WIDTH-1) & ppO (A-WIDTH-1) & ppO (A-WIMW-1 downto 1)) +

www.manaraa.com

else
if (b-reg(i)='l0) chez
P P (~) C= (pp(i-1) (AJJIM3I) & pp(i-1) (A-WIDTH

(a,reg(i) (A-WIDTH-L) & a-regti) :
else
pp(i) c= (pp(i-I) (L W I D T H) & pp(i-1) (A-WIDTr;

er-d if :
end LE:

end loop:
=à if;

end if:
eza process;

es& architecture rcl;

enrity reggipe is
generic (

DEPTH : pos f cive;
W I m : posicive

1 ;
port (

reset-n : in std-logic:
clock : in std-logic:
enable : in std-logic:
i : in std-logic-vector(WfM'H-1 downto O) :
O : ouc std,logic-vector(hKDTH-1 downco O)

1 :
--begiz
- - assert DEPTHz-1 repart 'Tesc' sevezicy -OR;
.. - assert ZI'IDTI-:>l report 'Tesc' severicy -OR;
en6 enti ty reggipe;

arcnitecture rcl of regqipe is

www.manaraa.com

www.manaraa.com

ez4 arc,iitectu=e rtl:

library ieee:
use ieee-std-logic,ll64.all:
use ieee-std-logic-arith-ail;
use ieee.std,logic,unsigr.eddall;

encity skew-buffer is
port i
reçec-n : in std-10gic:
c lock t ia std-logic;

dout0 : out std-logic-vecror(l5 dowxo O):
doccl : ouc scd-iogic-vecror(15 do-to 0)
:

enC e-ci :y skew-bu£ fer;

archi:ectUe rtl of skewJmf fer is

signal reg0
signal reg1
signal reg2
sigzal reg3

s igoal in-cotxqc : s~d~logic~veccar(1 aownco O) r
sigaal ic-comt- el : st&-logic-vectortl downto O) ;
signal i~,couxz=,delS : st&,logic,veccar(l àownto 01;

beg in

process (reset-n, clock)
begin

if (reset,n= ' 0 ' 1 then
reg0 <= (otSers=> (others=s ' O ' 1 1 ;
reg L <= (others=> (others=> ' O '));
reg2 c= lochers=> (others=> LO ' 1);
reg3 c= (others=> (others=w ' O ' 1 1 ;
in-count <= (others=> ' O ') ;
in-count-del c= (others=> ' O ') ;
in-count-del2 <= (ochers=> ' O ') ;
dou t O <= (ochers=> ' O ') ;
dou t 1 <= (ochers=>*O') ;

e k i f (rising,&ge(clockl 1 then
if (enable='lV then
in-count c= î.n-count + ' 1 ' ;
in-count-del c= in-count;
in-count-del2 <= in-counc-del;

case in-count is
when ' 0 0 ' =w regO(1) c= dinl; regO(0) c= din0:
wnen -01' => regL(1) c= dinl; regl(0) c= din0;
w h e n "10' => reg2 (1) c= dinl ; reg2 (0 1 <= din0 :
w h e n others => reg3 (1) c= dinl; reg3 (0 1 c= din0 :

www.manaraa.com

www.manaraa.com

X'F4-, X'F3'. XoF3', X'F2'.
X'EE', X'ED', X'EC", X'EC".
X'E8'. X'E7'. X'E6'. X'E5'.
X0E2'. X'EL'. X'EO', X'DF'.
X'DC" . X'DB' . X'DA' , X'D9'.
X'D6". X'DS'. X'D4'. X'D4'.
X'DO ' , X'CF' . X'CE' , X'CE' ,
x-CA-, x'c9'. x 'c9- , x 'c8-.
X'CS', X'C4'. X°C3', X'C3'.
X'BF', X'SF', X'BE', X'BD'.
X'3A'. X'B9'. X089', X'B8'.
X'85". X'54'. X'B4'. X033',
X'30'. X'h-', X'AF', X'AE'.
X'AB' , X'AS' , X'AA'. X 'm' .
X'A7'. X'A6'. X0A6", X'AS'.
X'A2'. X'A2'. X'AI'. X'AI',
X'9E'. X'9E'. X09D', X'9D'.
X '9km. X'9A'. X'9A'. X'99'.
X'97'. X'96'. X096', X'96'.
x - 9 4 . X'93'. X'93'. X'92'.
x - 9 0 ' . X 0 9 0 " . X'90'. X'8F'.
X'8E'. X'8D'. X'8D'. X'8U'.
X08B', X'89'. X-89'. X'BA',
x -89 ' . ~ ' 8 9 ' . X'88'. X -88" .
X - 8 7 - . X-87' . Xm87- , xœ86 ' ,
X-85 ' . X'85'. X'85', X'85'.
X-84 ' . X'84'. X'84'. X'84'.
X-83 ' . X-83' . X'83'. X-83'.
X'82'. X-82'. X'82'. X'82'.
X'82'. X'82'. X'82'. X-82'.

1 :

X'FI', X'FO', X'EF', X'EF',
X-EB-, X-EA-, x - ~ - . X - ~ 8 ' .
X'E5'. X'E4'. X'L3'. X'E2'.
X'DF'. X'DE'. X'DD', X'DC'.
X'D9'. X'D8'. X'D7'. X'D6'.
X'D3 ' . X'D2'. X'D1'. X'D1 " .
X'CD', X'CC'. x-cc-, X'CB' .
x'C7'. x'C7'. X'C6'. X'CS'.
X'C2 ' . X'C1' , X'CI' . X'CO ' ,
X'BD', X'BC', X'BB', X'BB'.
X'B7'. X'B7'. X'B6'. X'BS' .
x - a 2 - . X - ~ 2 ' . X -a l - . X-SI-.
X'AE'. X'AD'. X'AC'. X'AC".
X'A9'. X'A8'. X0A8'. X'A7'.
X'A5'. X'A4'. X"A.3'. X ' a ' .
X'AO'. X'AO'. X'9F0. X'9F'.
X'9C'. X'9C'. XU95', X'9B'.
X"99'. X'98'. X'98'. X'97'.
X'95'. X'95'. X'94'. X'94'.
X'92". X'92'. X'9i ' . X'91'.
X'8F0. X'8f ' . X ' 8 H ' . X'BE' ,
Xœ8C'. X'8C'. XW8C'. X'8B'.
X'8k'. X'8A'. X'89'. X'89'.
X-88' . X'88". X 0 8 ï ' , X'87'.
x'86'. X-86'. X'86'. X985 ' ,
X08S', X'84'. X-84'. X"84' .
X-83'. X'83'. X-83- , X-83 ' .
X-82' . Xg82', X'82'. X'82'.
X'82'. X'82'. X'82'. X082 ' ,
X'82'. X-82'. X'82'. X"82 '

cons taq t WI : LookupTable := (

X'OO", X'OO', X'FF'. X'FE', X'FD'. X 'm' , X'FC', X'FB'.
X'FA'. X'F9'. X'f9'. X'F8'. X'F7'. X'F6'. X'F6'. X'C5".
X'F4'. X'F3". X'F3'. X'FZ' , X'F1'. X'FO' . X'EF' . X'EF" .
X'EE', X'ED', X'EC', X'EC', X'EB', X'EA', X'E9'. X'E8'.
X'E8'. X027 ' , X'E6". X'E5'. X'E5'. X'E1". XoE3'. X'E2'.
X'E2'. X'El', X'EO', X'DF'. X'DF', X'DE', X'DD', X'DC'.
X'DC', X'DB', X'DA'. X'D9'. X'D9'. XgD8', X'D7'. X'D6'.
X0D6', X'DS', X'D4'. X'D4'. X'D3'. X'D2'. X'Dl', X'DI'.
X'DO'. X'CF'. X'CE'. X'CE', X'CD'. X'CC'. X'CC', X'CB'.
X'CA', X'C9", X'C9'. X9C8', X'C7". X'C7'. X'C6'. X'CS".
X'C5'. X'C4'. X'C3'. X'C3'. X'C2'. X"C1'. X'CI'. X'CO',
X'BF', X'BF'. X'BE'. X'BD'. X'BD', X'BC', X'BB', X'SB'.
X'3A'. X'B9'. X'B9". X0B8', X'B7'. X'B7", XgB6', X'BS'.
X'BS' , X'BO'. XmB4', X'B3'. X'B2' , X'B2'. X'B1' , X'Bl ' ,
X'BO ' , X'AF' . X'AF' , X'AE' . X'AE' . X'AD' , X'AC' , X'AC' .
X'AB', X'AB'. X'AA', X'A9'. X'A9'. X0A8', X'A8'. XgA7',
X'AÏ". X-86 ' . X'A6'. X'A5'. X' iS' , X'A4'. X'h3'. X ' M ' .
X'X!', X"A2'. X'Al'. X 'A l ' , X'AO'. X'AO', X'9F'. X'9F'.
X'92', X09E', X'9D'. X'9D'. X'9C'. X'9C'. X-99' . X'9B'.
X'9k'. X09k ' . X'9A'. Xg99', X'99'. Xw98', X'98'. X'97'.
Xg97', X-96 ' . X-96'. X'96'. X'95', X'95'. X'94'. X'94'.
X094', X'93'. X093', X'92'. X'92'. X-92" . X'91'. X'91'.
X'90'. X'90'. X'90'. X'8F'. X'BF', X'SF', X'8E'. X'8E'.
X'8E'. X'8D'. X'8D'. X'8D'. X'8Cg, X98C', X98C', X'BB'.
X08B', Xœ89 ' , X98B', Xg8A', X08A', X'8A'. X'89'. X'89'.
X-89 ' . X'89'. X'88', X'88', X'88'. X988', Xg87', X-87' .
X'87'. X'87'. X-87'. X-86'. X'86'. X086', X'86', X'85'.
X'85'. X'85". X'85', X-85'. X "85" . X'84'. X'84'. X'84'.
X'84'. X'84'. X'84'. X'84'. X.'83', X'83'. X'83'. X'83'.
X083', X083 ' , x -83 ' . X'83'. X'82'. X-82'. X'82'. X082',
X'82'. X'82'. X-82'. X'82'. X-82'. X082', X'82'. X'82'.
X'82'. Xw82', Xg82', X'82". X'82'. X082', X'82". X082 ' ,
X'81', X'82', X-82'. X'82'. Xœ82' , X'82'. X'82'. X'82'.
X'82'. X'82'. X'82'. X'82'. X'82'. X082', X'82'. X'82'.
X'82'. Xg82', X082', X-82'. Xm82' , X'83'. X'83'. X'83'.
X-83 ' . X'83'. X-83'. Xg83', X'83'. X084', X'84'. X -84 ' .
X'84'. X'84'. X'84'. X'84'. X'85'. X'85'. X085', X'85'.
X-85 ' . x -85 ' . X-86- , X-86'. X-86 ' . X-86'. X-87'. X-87 ' .
X 0 8 7 " , X987 ' , X'87'. X'88'. X'88'. X'88'. X'88'. X'89'.
X'89', X'89'. X'89'. X'8A'. X'EA', X08A', X'8Bw, X'8B'.
X'8B'. X'BB', X'8C'. X08C', X'8C'. X'8Dm, Xg8D', X'8D'.
X08E', X'8E'. X'8E'. X'8F'. X'8Fw. X08F'. X'90'. X090 ' ,

www.manaraa.com

x-go-,
x-94 ' .
X'97'.
X' 9A' ,
X'9E'.
X'A2'.
X'A7 ' ,
X'AB' ,
X'BO' ,
X'BS' ,
X' BA' ,
X' BÏ' ,
X'C5'.
X'CA' ,
X'DO ' ,
X'D6 ' .
X'DC' .
XgF2',
X'E8'.
Xe EE' .
X'F4 ' .
X' FA' .

) :

X"91'.
X'94'.
X'97'.
X'9B'.
X'9F'.
X'A3 ' .
XœA7',
X'AC' .
X'BI' .
X'BS' .
X'BB' ,
X'CU' .
X'CS' .
X'CB' .
X'DT' .
X'D6'.
X'DC' .
X'E2'.
X'E8 ' ,
X'EF' ,
X'FS ' ,
x-F9' .

X'91' .
x-94 ' .
X'98'.
X'9B'.
X'9F'.
X'A3 ' .
X'A8".
X'AC' ,
X'Bl' .
X'B6'.
X'BB' .
x-ci- ,
X'C6 ' .
x-cc- .
X'DI' .
X'D7'.
X' DD' ,
X'E3 ' .
X'E9" .
X'EF' .
XgF6',
X' LC' .

X'92'. XD92',
X'95'. X'95'.
X'98'. X'99'.
X'9C'. X ' 9 C ' .
X' A0 ' . X' A0 ' .
X'A4'. X'AS',
X'A8'. X'A9'.
X'AD" , X'AE' .
X'BS'. X'B2'.
X'B7'. X'Bf' .
X-BC- , x-a~-,
X'CI ' . X9C2',
xgc7-, X'C7'.
X'CC'. X'CD',
X'D2'. X"D3'.
XgD8', X'D9'.
X" DE'. X'DF' .
X'E4'. X'ES' .
X'EA'. X'B'.
X'FO'. X'P1'.
X'f6'. X'F7'.
.yWFD'. X'FD'.

X'92'.
X'96'.
X'99'.
X'9D' ,
X'A1'.
X'AS' .
X'A9'.
X'AE' .
X"B3'.
x - ~ a .
X'BD' ,
X'C3' ,
X'C8'.
X'CE' ,
X'D4' .
X'D9'.
X'DF' .
X'ES" .
X' EC' .
X'FZ' .
X" FE',
X'FE' .

X'93'. X'93'.
X'96'. Xœ96',
X'9A'. X'9A0.
Xg9D', X'9E'.
X'AT", X'A2'.
X'A6'. XgA6' ,
X'Ail'. X'AB'.
X'AF', X'S",
X'B4'. X'B4'.
X'B9'. X'Bg',
X'SE' . X'BF' .
X'C3'. X"C4'.
X'C9'. X'C9'.
X'CE' . X'CF' .
X'D4'. X'DS'.
X'DA'. X'DB',
X'EO'. X'EI'.
X'E6'. X'W'.
X'EC', X'ED'.
X'F3'. X°F3',
X'Fg', X'F9'.
X'FF', X'OO'

beg iz?

end architecture rtl;

D.13. Testbench 44cfft1024_tb.vhd"

libra-T ieee:
use ieee.stLlogic,ll64.a11;
use ieee-std-logic,ari&.all;
use ieee-std-logic,unsignededa1L;
use s:d,zextio.all;
use ieee-std-logic,texcio.all;

enticy cfftl024,tb is
ecd entity cf ftl024-tb:

azchicec:ure benaviorai of cffc1024-~~ is

component cffcl024
port (

reset-n
clock
enable
start
busy
doce
data-in
data-ou t

1;
end component cfftl024;

std-logic;
std-logic;
std-logic:
std-logic;
std-logic;
std-logic;
std-logic-vectori 7 downto O) ;
std~logic,vector~lS downto O)

component twiddle-factors
port (

k : in std-logic-vector (8 downto O) ;
w,r : ou= scd-logic-vector(7 downto O);
w-i : out std,logic,vector[7 downto O)

1 ;
end component twiddle-factors;

www.manaraa.com

-- - Const=rs & New Types _ _ ___________________--
cons tan t N-POINTS : integer := 1024:
constanc N-DATA : i n t ege r := N-WINTS02-1:
constant NODESJmLEVEL : inceger := N-PûINTSfZ: - - constant LEVELS : i n t ege r := Zog2(N,POïNTS);
cozs tan= LEVELS : izceger := 10:
cons tëmt ITERATI ONS : integer : = NODES,PERJEVEL%EVELS:

type M m e is arrayc O tu 511 of scdJogic-vector(l5 dovrico 0) ;
signal mem-barzkOr : Mem'Type:
s igna l men-bark0i : MeniType:
s ignal mem-knklr : M e m T y p e ;
signal mem-bankli : Menr?Lpe:

s ignal reset-: : std-logic:
s ignal clock : std-logic:
s igna l enable : std-logic:
s igna l s t a r t : std-logic:
sigrial h s y : std,logic:
s igza l done : std-logic;
s ignal data-in : s t ~ ~ l o g i c , v e c c o r ~ 7 ciowx~to O) :
s ignal data-out : scd~ log i c ,vec~or l l 5 downto O) ;

port map (
reset-n =>
clock =>
enable =>
s t a r t =>
bus y = >
doce = >
&ara-in =>
data-ouc =>

1 :

reset-n,
clock.
enable.
S t a r f .
~ S Y .
done.
data-in.
data-out

cwiààles : twiàale-factors
port map i
k => K.
Kr => w-r,
w-i => w-i

1 :

ClkGen: process
begin

reset-n c= ' 0 ' . '1' a f t e r 5 us;
loop

clock <= ' 0 ' . '1' a f t e r 10 ns:
w a i t f o r 20 ns;

end loop;
end process ClkGen;

ApplyStimulus: process - - f i l e input-vector : cext open read-mode is .source:xrœ;
f i l e input-vector : t e x t ;
variable 1 : l i ne ;

www.manaraa.com

variable d-real : std~logic,vector(7 dowato 01:
variable d-imag : stt5-iogic-vec=or(7 downto 01:
variable data-count : sr~logic~vector(l0 downto O);

enable c= '0';
seart <= '0' ;
data-in <= (ochers=> ' O ') ;
wait UT--- rising-edge f clockl ;

waic un=i1 rising,edge(clock):
szart <= ' 0 ' :

read (1, d-real :
data-in c= ü-real:
wait until rising-edge(clocki;

readlinel input-vector, 1) :
reac i 1. ci-img 1 ;
daza-in c= d-hg:
waic irnciï rising-edge (clockl ;

end ioop;

file-close(input-veccor 1 :
wait;

e2d process ApplyStimulus;

CaptureOucput: process

fiLe output-vector : tex:
variable 1 : lhe;
variable dara-comt : scd,logic~vecto~~l0 downto O);

begin
file,open(output,vector. ~~~~~~~~~~~~. writeaode 1 ;
ioop

w a i c uncil risiag-eàgetclock);
exi c when done= ' 1' ;

end loop:

data-count := iothers=,'O'I;
while (data-count/=N-üATA i loop
wait uncil risiag-edge (dock) ;
data-count := data-count + '1';
writec 1. data-out 1:
mite(1. stringg(' 1') 1;
hwrite(1. data-out 1 :
write(1. string'('lwl 1:
writeline (oucput-vector. 1 1 ;

enci loop;
write (1. dataput) ;
m i t e (1, string'(' C g) 1 ;
hwrite (1, data-out 1 ;
c i c e (1, string'(-1') 1:
writeline (output-vector. 1 ;

file,close(output-vector 1 ;
wait:

end process Captureûutpuc;

end architecture behavioral ;

