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Handling Large Data Storage in Synthesis of Multiple FFGA Systems 

Amal Khailtash 

Implementing DSP algonthmç on single or multiple FPGAs has the advantages of 

short time to market. non-rec-g engineering, and fast prototyping. Most of today's 

FPGAs provide fast aritbmetic operatioas and large enough interna1 RAM storage that 

rnakes them very appealing to prototyping large systems, even building DSP applications. 

So having a good architecture to begin with is a good asset to engineers. 

This thesis hvestigates the issues of handling large data storage in the synthesis of 

multiple FPGA systems especially in digital sigdirnage processing applications. In these 

applications very simple to complex algonthms are performed on large amounts of data - 

an image. An efficient way to store and access these data, the storage of intermediate 

variables locaily or on RAM, is presented. The maximum pipeline level is extracted based 

on this storage and access scheme. A genenc architecture for execution of arbitrary DSP 

algorithm with multiple memory banks is proposed. An lLP fonnuIation for assigning 

memory banks to variables is presented. For demonstration purposes, a pipelined cornplex 

M has been developed in VHDL and the efficient storage and access order for this 

algorithm is presented Also. based on these storagelaccess orders, the generation of 

addresses is done using hardware address generators. 
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Chapter 1 

1. Introduction 
With today's uicreasing need for processuig power in the telecommunications and 

other industries, new techniques are used <O accelerate the design turn around and to 

decrease the area/power consumption of the system, yet increase the system performance. 

New high-level synthesis toois should consider rnany factors and try to manipulate the 

system definition based on the designer's specification at a higher Ievel of abstraction 

before going down to the RTL' code optimization and the h a 1  physical implernentations. 

The need for more architectural enhancements, either manually or by a high-Ievel 

architectural synthesis tool is more essential and evident. 

New techniques based on hardwardsoftware codesign. which has recently corne to 

the attention of many researchers [l], [2], [3], [4], [5 ] ,  [6] and the industry, try to merge 

all aspects of system design in one unified environment that can tackle the problem and do 

optimizations at ai l  levels and across multiple doxnains. Codesign took d o w  a designer to 

specify an algorithm at a bigh level of abstraction. The tool does a lot of optimizations and 

finaily partitions the design into a software module that would reside on a general purpose 

processor and another module that would go into a dedicated logic such as multiple 

FPGA' or ASIC~. 

' Register Transfer Level 

' Field Programmable Gate A m y  
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With today's million-gate FPGAs, one can put more functional units like 

multiplier-accumulator blocks in paralle1 and achieve a higher performance. It is aiso 

possible to find a vast variety of sofi and hard cores ranging kom dinerent DSP 

dgorithms, microprocessors, PCI* interface cores, to large cores like MPEG~ 

encoderfdecoder chips, network controuer chips, and communications systems building 

blocks. There are many design houses and independent designers that work only on 

creating IP7 cores, which corne complete with testbenches and documentation and 

sometimes even the source codes, using the latest EDA' tools. 

FPGA devices are ideal prototyping tools for small to medium size systems. The 

MTTM~ for systems implemented using FPGAs is small. The NRE" associated with the 

system is ako Iow compared to an ASIC because of the fewer number of steps needed to 

arrive at the final design and the chance to enhance previous designs faster and try 

dflerent designs in less Ume. FPGAs also have the advantage of reconfigurability. The 

concept of on-the-fly reconûgurable boards is not new. In fact there have k e n  rnany 

papers on th& subject 171. There are also commercial produccs that make use of this 

technique and the reconfigurability of the SRAM based FPGAs. One such product is the 

MEGA-OPS system that has multiple FPGAs and three memory banks on a single board. 

Application Specific Integrated Circuit 

Digitai Signal Processing 

Peripheral Component Interconnect 

Moving Picmm Experts Group 

IntelIecnial Properiy 

' EIecLronic Design Automation 

Mean Time To Market 
10 Non-Recumng Engineering 
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Their goal is to irnplement hardware accelerator boards that speed up the computations on 

a persona! compter. 'I'hey use a C-style language to specify the algorithm and a compiler 

that compiles it to an intermediate form and fmally to a form suitable to be downloaded 

into the FPGAs on the board- Once the FPGAs are configured the board can execute at a 

much faster speed and the speed-up gained is much more than the software only 

implementation of the algorithm It also has the flexibility of the software; Le., one can 

change the algorithm and download a new one into the board and use the system for a 

difTeren t purpose. 

FFT Bitstrearn 4 - FFT Processor 

Convolution Bitstrearn - Convolver 

MPEG-2 encode/decode - MPEG-2 
Ri rctr~arn encoderldecoder 

Figure 1. A reconfigurable board 

One can also achieve a higher performance by parallel implementation of 

algorithms on an FPGA or dedicated iogic than implementing it on a generd purpose DSP 

processor. This is true if one can convert a floating point algorithm to its hxed-point 

counterpart with reasonable resolution, FPGAs codd have advantages over general 

purpose DSP processors. Otherwise fioating-point operations are better done on floatiug- 

point DSP processors. Currently, the DSP processors have a few (usuaily one or two) 

built-in muitiplier-accumulator units that are the essentiai part of most digitaI signal 

processing algorithms. New breeds of architectures fkom Texas Ins tnrments, Analog 
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Devices. Lucent Technologies and Motoroh are using VL,IW1' processors with multiple 

data pipelines to improve the performance and throughput of the processor for these 

applications. 

Most signal processing applications, especially those in the field of image 

processing, need to access large amounts of data that are normally stored in RAM. The 

way in which this access is done highly affects the W architecture. Atso the way one sets 

the consmaints on the synthesis tool ai3ects the performance and area of the final 

architecture obtained. The goal is to increase the memory bandwidth thus increasing the 

performance of the system, but this rnay add to the total area. which may not be very 

desirable in aii applications. Therefore there is a trade-off between the area and the 

performance of the system The arealperformance factors also S e c t  the final power 

consumption of the system. 

The purpose of this work is to study a system architecture with multiple memory 

blocks that can be accessed simultaneously by the processing kemel, which win run the 

algonthrn These memory blocks d o w  the exploitation of pardiehm that rnay inmase 

the throughput of the system Adding more memory blocks and more pardel data paths 

rnay not be opthai  for dinerent applications. More paralleihm in an algorithm also puts 

constraints on the mmory subsystem. One has to provide more &ta in parailel for 

alleviating the bottienecks and not to starve the pipelines of the computing engine. 

-- 

" Very Large Instruction Word 
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1.1. Motivation 
High-level architectural synthesis tools have come a long way and have tackled 

different aspects of a design. There have been many studies on synthesizing and 

automathg the generation of optimal data paths and control Iogic to execute a specific 

algorithm In recent years, with advances in communications technology and the advent of 

CO mplex DS P systems, arc hitecturd transformations and enhaucerneats have becorne more 

important than ever. These optimizations tend to ignore the effects of aux ïby  memory 

used in these algorithms. The way the variables are stored in memory and how they are 

accessed during the execution of the algorithm c m  dictate how the control structures 

work and can also affect the data path itself. The million gate era for FPGAs has arrived 

and as mors and more functionality and architectural improvernents appear in new FPGAs, 

the dream of millions of gates SOC" becomes a reality. But without proper took and 

knowledge of the algorithm and different architectures. these devices may not be utilized 

as e fficien tly as possible. Architectural decisions and enhancement techniques are equally 

important to both FPGA and ASIC designs, but they are more important for ASIC flow 

with its associated NRE cost and time spent during the design. 

This work emphasizes the importance of paying attention to the memory 

subsystem during architectural synthesis and enhancements that can be achieved by proper 

selection of the number of mernory banks and scheduling of the readlwrite operations. 

Traditional techniques are reviewed and dinerent views on the subject are explored. 

This study tries to find answers, techniques, formulations, heuristics and arrive at a 

novel architecture for a multiple memory system The main issues are choosing the right 
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number of memory banks for a specifïc algorithm, correct scheduie for the rnemory 

transactions and sketching the final design. 

The techniques presented will assist in arriving at a better architecture with 

multiple memory banks that cm be used for running different DSP algonthms. The 

architecture presented is simple yet effective. Later chapters will show this sirnplicity and 

how it  rnakes a design based on uùs architecture to run much faster than others. 

1.2. Outline 
Chapter 2 s tms  with explainhg the basics of high-level synthesis, especially 

architectural synthesis. The fundamental processes involved in arriving at an optimal 

architecture that can be used to run a variety of DSP algorithms are explained. The 

methods descnid are independent of the target technology used, whether it be ASIC or 

FPGA. The emphasis of the following chapters would be on FPGAs. 

Chapter 3 concentrates on discussing different methods and issues found in papers 

dealing with architectural synthesis of aigorithms that use memory to carry out their task. 

M e r  showing different architectural transformations, a generic architecture for running 

DSP algorithrns is proposed. A method to find the maximum pipeline level for various 

accesses to the scratch-pad (temporary) memory used for storage of intermediate and tiaal 

variables is presented. This chapter ends by showing the effects of retiming and pipelining 

on the variable Me times and thus the memory used. A schedule for an FFï algorithm wiU 

dso be shown. 

'' Systern On a Chip 

6 
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In chapter 4 a novel approach for hding the optimum number of memory banks 

for a specifïc algorithm is presented. First, an exhaustive search scheme that has very big 

run times is shown, and then the same problem is fonnukted using the hteger Linear 

Programming. From this chapter on, the FFI' exampb algorithm is used throughout the 

work, 

Chapter 5 goes over dinerent techniques in generating addresses for a specinc 

aigorithm and finally shows a method to build a hardware address generator. 

Chapter 6 uses the methods developed in the previous chapters to irnplement an 

FFT hardware engine. 

Chapter 7 presents the detaüed VHDL design of a complex FFT and shows the 

design challenges and issues. Different aspects of VHDL design of the data path and 

control logic for this optimized DSP algorithm is shown. 

Chapter 8 gives future directions and brings up issues to be resolved in dealulg 

with memory in architectural synthesis. 
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Chapter 2 

2. High-Level Synthesis and FPGA design Flow 
There are many steps involved in the high-level synthesis of architectures [SI. 

Foiiowed by the architectural synthesis is the actual logic synthesis or silicon compilation. 

The results of architectural synthesis affects the outcome of the final design after logic 

synthesis; i.e., the design decisions made and tradeoffs used in choosing the architecture 

changes the aredspeed grades of the result. 

Nowadays many synthesis and EDA software companies' attentions are focused on 

rnaking synthesis tools more aware of and capable of making architectural decisions to 

improve overall system performance, power and area. 

2.1. EIectronic Design Automation and Synthesis 
The electronic industry is a very fast. dyoamic filed that is also very competitive. 

To reduce the amount of thne spent designing a systern, design automation and synthesis 

are introduced. Electmnic design automation deals with rnakuig most of the design steps 

automatic and faster to cornplete. It covers all aspects of the design i?om the design entry 

to implementation and W y  design veriîïcation. Design automation allows the designer to 

try out dinerent designs and corne up with a good trade-off in the shortest amount of tirne. 

This lets the designer to arrive at the most optimum design needed for a specinc 

application. 
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Design entry could be schematic, block diagram, state diagram and flow charts or 

other means of specifjhg the system. Design implementation EDA tools cover the 

synthesis, partitioning, placement and routing of the design. Examples of the design 

verifkation tools are high-level and gate-level simulators and automatic test bench 

generators. 

Synthesis is the action of arrivïng at a circuit at the finest grain after specifying the 

system at a higher level of abstraction. Synthesis is usuafly divided in three different 

categories: 

1. High-level synthesis 

2. Logic Synthesis 

3. Layout and physical synthesis 

The high-level synthesis transforms the specification of a design, which is at the 

highest level and specines the behavior of the system, to a structural netlist of 

intercomected components and RTL logic. This is explahed in more detail in the next 

section. 

Logic synthesis deals with converthg the structural RTL specitication of the 

design to an optimal (simplIified) combinatorid and sequential Iogic mapped to a speci6ic 

technology and ceil library. Logic synthesis is not covered in this work (refer to [IO]). 

Layout and physical synthesis converts the mapped structural design into the exact 

physical geometry or layout of the design. This includes the actual placement and routing 

of the components. 
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2.2. Operations Done in High-LeveS Synthesis of Architectures 
The f ~ s t  step in high-level synthesis is the compilation of the source description, 

whether it be an HDL or other high-level representation of an algorithm to an intermediate 

format. This intemediate fonnat is rransformed into a more suitable representation for 

high-level synthesis that is usually a Control Data Flow Graph (CDFG}. A Control Data 

Flow Graph is referred to two directed graphs called a Control Flow Graph (CFG) and a 

Data Row Graph (DFG). A CFG contains the flow of control in the original specification 

with nodes k ing  the operation and the edges king the dependencies of operations. The 

DFG contains the flow of information fÏom one operational unit to the other. These 

opentions usuaily encompass compiler-like and hardware-specific transformations. 

Some of the transformations at this stage include: converting more complex 

operations to sirnpler ones with the same functionality, increasing the parailelkm in the 

operations, and reducing the number of data flow levels. 

Afier a CDFG is extracted Erom the high-level language specification, fiom this 

CDFG, the control circuitry and the data path are derived. 

The main tasks in high-level synthesis that should be done to derive an architecture 

from a system speci£ïca<ions are: Ailocation. Bindhg and Scheduling. M e r  these three 

steps the design is written out in a structural RTL language and passed to logic synthesis. 

The three main steps in high-level synthesis are explained briefly. 

Allocation is the assignment of dinerent functional elements for the systern, 

including Functionai Units (FU) - adders, multipliers, ALUs, etc.- Registers, Register 

Fies, RAMs, Interconnections, Busses, MUXes, and Bus Drivers. The selection of 
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different hnctional units is based on the constrains passed to the synthesis tool, The 

allocation phase tries to select operations that seem to satisfy the timing consuaint by 

Iooking at the DFG. 

Binding is the assignment of operations to functional units, data transfers to 

busses, multiplexers and interconnections, variables to registers, register files and memory 

blocks, addresses to memory locations. Bïnding tries to optimize the sharing of hardware 

resources. Operations done at different cycIes can share the same functional unit, variables 

that are not dive (needed) at the same time can share the same register or memory 

location, and data transfers that do not occur at the same time can share the same path 

(bus or multiplexer). 

Scheduling is the assigrunent of data transfers, lifetimes. operations to clock cycles 

in a synchronous system Scheduling tries to optimize the number of clock cycles needed 

ro finish the algorithm given the consîraint on the hardware resources and the number of 

clock cycles. This operation takes into account the control relauonships specifïed in the 

CFG and also should consider the data dependencies specified in the DFG. Scheduling 

ais0 deals with chnining of operations and multi-cycle operations. 

These three tasks and their relationships is shown in Figure 2. 
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Figure 2- T '  in a high-level synthesis tool 

In a synthesis tool, these tasks are done to obtain an architecture from 

specification. The starting point for these t a s h  is usually Ailocation. But there is a cycle 

arnong these three tasks that should be done a number of times to arrive at the desirable 

architecture based on the constraints put on the synthesis tool by user specification. Some 

synthesis tools break this cycle at some point or even do two or three of theses tasks 

together. The complexity of the tool increases as these tasks are done together, but the 

architecture obtahed is closer to the optimal architecture because doing the processes 

together gives global visibility of the system to the tool. 

There are different scheduling techniques. A few of them are: 

1. Fîrst come, h s t  served (FCFS) scheduling. This looks ody at data dependencies 

and tries to schedule operations h m  the fmt to the last one whichever come first. 

2. ASAP (as soon as possible) scheduling, by which. operations are scheduled as 

early as possible considering their dependencies. 



www.manaraa.com

3. ALAP (as Iate as possible) scheduling, by which, operations are scheduled at the 

latest possible maximum time ailowed- 

4. Criticai path scheduling, also called mobility scheduiing, schedules operations 

based on their mobilities. Mobility of an operation is the ciifference between its ALAP and 

A S M  schedule. 

5. Lifetime scheduiing tries to h d  a good schedule by minimiung the number of 

registers. 

O ther scheduling techniques are "Force Direc ted Sc heduluig", "List Sc heduling", 

and "Look-ahead Scheduiing". 

In this study, work on binding variables to memory blocks and addresses to 

memory locations are undertaken. Other tasks are also reviewed as the finai architecture is 

derîved. 

2-3. FPGA Design Flow 
To arrive at the final programmuig bitstream for the FPGAs, a designer starts by 

system specification and then capturing the design with a design entry tool. Design enuy 

can be pure schematics, pure HDL'~ code ( ~ H D ~ ~ ~ ~ e r i l o ~ ) ,  or mixed schematics and 

HDL. Foliowing this is a simulation step, in whicfi the fiinctionality of the design is 

verified. After the verification step, is the actual synthesis of the HDL code and design 

optimization The input to this step is the designer's timing and area constraints. Tbe first 

step in the design implernentation, is the HDL synthesis and mapping the design to the 

" Hardware Description Language 

'' VHSIC (Very High-Speed Integrated Circuit) Hardware Description h g u a g c  
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target device (technology mapping). Then the mapped design is flattened and al l  the 

elements are piaced considering the timing and placement constraints. M e r  placement, is 

the automatic constraint-driven routing of the nets in the design and their interconnects. At 

the end of this step, the configuration bitstream for the FPGA is produced. 

To v e w  the fiinctionality at this stage, one must back-annotate the actual delays 

korn the placed and routed design back to the flattened HDL netlist and do a timing or 

back-annotated sirnuIation. The result of this simulation is to be compared with the result 

of the functional simulation. If the two resu1ts are within the allowable range of design 

specifications, the design cycle is complete. The complete flow is shown in Figure 3. 

The ASIC design flow is very si& to the FPGA flow with a few more additionai 

steps. There could be an RTL floor-planning before the actual synthesis to improve the 

area/performance. After the synthesis, which takes user constraints and the target 

technology's ceii libraries, is the final floor planning and placement of the modules. For 

better design testabW. a DF~? scan chah insertion step is done in which the IEEE 1149 

boundary scan chah logic is inserted at the WO boundaries. 

An Automatic Test Pattern Generator (ATPG) module and a signature analyzer 

module could also be placed on chip to do self test and sanity check on the circuit. 

15 Design For Tcstabiiity 
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Figure 3. FPGA designflow 
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There could be an additional power optimization of the system in which some 

techniques are used to reduce the toggling rate of fip-flops thus reducïng the power 

consumption of the system. 

4 l 
Back-annotated 

HDL Netlist 
Generator 
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Afier the final routing is the delay extraction and generation of the back-annotated 

netlist that is usually in the EDIF'~ format or VHDUVerilog netiist with associated SDF". 

A comprehensive simulation is doue at this stage and if there was a problem at this stage, 

the preceding steps could be repeated. M e r  the nnal confirmation that the design satisfies 

the design specifications, the rnasks are generated and the chip layout is done. The masks 

are sent to the fabrication facilities where the chip is fabncated and packaged. 

- 

16 Elecuonic Design Interchange Format 

l7 Standard Delay Format 
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Chapter 3 

3. Handling Memory in Synthesis of Architectures 
In this chapter, dinerent architectural transformations related to the synthesis are 

expiored and then differenc memory access (loop) traflsfonnations are presented. Then 

some of the published techniques in dealing with synthesis of DSP algorithms that make 

use of memory as temporary storage are reviewed. 

3.1. Architectural Transformations 
There are very simple architecturai transformatioos that can improve area andfor 

performance of a specific algorithm Some of these transformations are results Born 

compiler technology [9] applied to hardware synthesis [IO], [Il] ,  [12]. 

Figure 4. Architecrural transfonnarions. 

17 
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As c m  be seen in Figure 4, one can see three different simple transformations, 

which improve the overaii system arealperformance by reducing the number of operatiord 

units and their associated delay. 

The 6rst transformation is the use of other fiinctionally equivalent, more 

aredspeed efficient operational units in place of more costly ones. An example would be 

using shifis instead of multiplication by a constant power of two number. This improves 

both area, speed and power consumption of the system. 

The second transformation is using the association property of operations to merge 

and group multiple operations. This improves delay and therefore system performance. 

The third transformation is distribution or what is usually called resource-sharing. 

And that is to factor and use the cornmon part of multiple operations. This improves the 

resulting area and power consumption. 

3.2. Memory and Loop Transformations 
In section 3.5, the reader will see how arrangement of variables in memory 

(storage order) and accesses to those variables (access order) c m  &ect the pipeline Iength 

and the variable lifetirnes in memory. There are other ways to reduce the memory trafic 

(reads andor writes) by using loop transformations. 

One can observe the foliowing different methods mentioned in [13]: 

1. Loop-invariant removal tries to move the parts of the loop body that do not 

depend on the loop index to outside of the loop body. 
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2. Load-after-load optimization removes the second load fiom the loop body if the 

second access is to the sarne location as the fust and the sequence of operations have not 

changed the value of the variable accessed. 

3. Load-afier-store optimization removes load if t k r e  were no other store 

operations to the same memory location and the intemal variable is used instead of another 

memory access. 

To improve the performance of compter systems and algorithrns, one can increase 

the number of memory banks that provide data to a specific architecture and keep its 

interna1 pipelines fully utilized. Usually data interleaving is used for the storage of 

information in these multiple memory, parailel systems. But this may resuk in memory 

access contention and pipeline stails. There are also other dynamic methods to increasing 

the performance of multiple memory, parailel systems by using d y n d c  storage schemes 

and address transformations [ 141, [15], [16]. 

3.3. Studying Different Methods 
In this study, dinerent approaches taken in different areas of computing 

applications have been looked at. One such approach is in the implementation of data 

s tmct ures and rnemory management strategy using windo w analysis in the Cathedral-II 

system [17]. It analyzes the algorithm and for a given number of memory ports reduces the 

total number of storage locations needed to a near muiimum First, the minimum number 

of locations that store eacb data structure separately in chunks of contiguous RAM 

locations, caiied pages, is found. Next, pages can share the sarne physical memory 

locations if their contents is not dive simultaneously. It was also observed that storage 



www.manaraa.com

order and access order of a data structure in rnemory, changes the arnount of storage 

requirements. In this system, which is based on Iifetime analysis, variables with disjoint 

lifetimes can share the same rnemory location thus reducing the memory size needed. The 

''window of an array" is that section of the array that should be dive in rnemory in order 

for the algorithm to run properly. With the change in the storage and access order of an 

array the window of the array changes and thus changing the amount of local memory 

requîred in the architecture. 

Another approach taken, is using loop and control flow transformations using 

polyhedral dependence graphs (PDG) [18] and finding an ordering vector for optimal 

memory access having the bandwidth constraint as the maximum number of simultaneous 

memory accesses at any time point. Their approach is that ail the intemediate variables 

that are sure to be consumed directly after their production do not have to be stored in 

background memory. One important point is that memory size is related to the maximum 

number of signal instances to be stored at any point of t h e  for a given ordering of 

operations. 

Another interesthg paper is in the field of high-level-language compilers for 

parallel machines and the subject of loop transformations to increase parallelism. In this 

paper 1191, a number of transformations are proposed to increase parallelism. The object 

of this paper is parailel computers that have 6xed architecture and is dinerent fiom what 

has to be done for this work; Le.; compilation for an architecture that is unknown. 

In another paper [2O]. a technique using Mathematics of Arrays and the w (PSI) 

calculus is used to generate addresses for data transfers that require less data tramfers 
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than more rraditional algonthms. But again this is targeted for general purpose processors 

with fixed architectures and single memory port that is not suitable for the purpose of this 

work. 

In [2 11 a coprocessor engine using FPGAs for a gewral purpose DSP processor is 

shown that helps in the computation of a 3x3 convolution on a 2-D image data. They 

extract the winciow, or the active variables needed to compute one 3x3 convolution sum, 

fYom the algorithm and with the aid of FIFOs they supply enough data for the architecture 

implemented in the FPGA to compute the rest of the convolution. 

It is known that how the data is stored in rnemory and how it is accessed can affect 

the memory requirements of the final architecture. In [22], 1233, 1241, it is s h o w  that 

arranging the data in multiple memory banks for a pardel machine can change the 

throughput of the system So there is a trade-off in the number of memory ports (blocks) 

and the arnount of local storage inside an architecture for different algorithms. 

3.4. Architecture Proposed for Execufing DSP Algorithms 
From the study of ail these papers the following design is proposed (Figure 5) that 

is suitable to implement a nurnber of different DSP algorithms with different degrees of 

parailelism. It is assumed that the algorithm is originally specified with some kind of loop 

structure and the imer core of the loop is speciaed as a signal flow graph. The memory 

blocks could be implemented as discrete memory or as embedded mernories inside FPGA, 

whic h are abundant in today ' s FPGA architectures. 
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Figure S. Proposed architecture 

To dustrate this, an &point, radix 2, in-place FFT'~ based on this design is chosen 

for implementation (refer to [45] for detailed explanation of FFï). In this multiple port 

memory design, it is desirable to be able to pass data fiom each of rnernory blocks to the 

inputs of the data path kernel which is implementîng the b e r  core of the loop of the 

signal flow graph. And it should also be possible to store the outputs o f  the data path to 

any or ail of the memory blocks. This is the reason for the memory port switch-box unit at 

the inputs and outputs of the data path to the memory blocks. This is derived fiom the fact 

that in many of the signal flow graph representation of algorithms, if the signal flow graph 

is repetitive (composed of similar operations), one can fold the graph and only implement 

the repetitive part and forward the proper data to the inputs of this folded graph. This c m  

be seen in the signai flow graph of the FFT example; as in Figure 6. 

Fast Fourier Transform 
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iEach input symbol is i 
jassumed to be a complex : 
inurnber with real and I 
Iirnaginary parts. 

50 the bunefly has four : 
!inputs. 

\ Each Butterfly Implementation Detail 

Figure 6.8-point. rad& 2. in-place FEï(Coo1ey-Tukey) 

Assumuig. ail the memory accesses have been assigned to the variables that should 

be s tored in memory, with a specific computation order, one should schedule the reads and 

writes of these variables and also bind them to a specific memory port. 

To do thû, the b t  task is to assume a computation order. For this purpose 

consider the fuily folded graph of the FFT exarnple; as in Figure 7. 
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\ FulIy Folded Croph 

Figure 7. A number of  folded implemenrarions of rhe FFï  

The computation order considered; having Figure 6 in rnind, is a column-wise scan 

of the signai flow graph; i.e., the top-left butterfly is computed first, then the second top- 

left butterfly, then the third-top, and so on. For each step of the computation an iteration 

count is assigned; Le., the k s t  butterfly is assigned 0, the second 1, and so on. To 

continue the process, ailocation, scheduiing, and binding for the butterfly graph is done 

and the number of cycles needed to finish the operations is found. Then considering the 

architecture proposed in Figure 5, one should do the foilowing operations one afier 

another. In the f k t  iteration of the loop, the necessary variables are supplied to the correct 

inputs of the butterfly (the data-path core in Figure S), then it is time for the computation 

cycle of the buttertly itself, and then the output results are written to one or a number of 

memory blocks. 

The memory switch-box is responsibIe to route the correct input to the data path 

and the result to each memory block. These series of operations can be seen in Figure 8. 
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Iteration O 

-- - -- - -- 

Figure 8. Sequence of operurions in execurion of rhe gr& 

The write operations of each iteration can be done with the read operations of the 

next itemtion assurning there is no conaict in the memory organization; Le.. there can be 

sirnultaneous reads and writes, and &O the variable produced is only consumed at least 

two iterations apart. If the variable is going to be used in the next iteration it can be fed 

back to the graph with a single delay or a recursive edge instead of king stored on the 

external memory to the data-path. 

If the inner core graph cycle time is comparably longer than the cycle tirnes of read 

and wnte operations, the graph cornpuration of the third iteration can also be done in 

parailel with the read of the second, and write of the first iteration. The resulting order of 

operations can be seen in Figure 9. 

- - -  - -- 

Figure 9. Sequence of operariotts. showtirg rhe paroIIeILrm achicved. 
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3.5. Extracthg the Maximum Pipeline Leve! 
Now the weights of each edge of the folded graph are extraaed. Weights are the 

delays that should be put at the output of one iteration so that the correct value is passed 

to the iteration that needs this value. For example, if a value is produceci at iteration 5 and 

is used at iteration 9. there should be a delay of 3 (z3) at the output or an edge with 

weight 3. Figure 10 shows different order of operations needed CO cornpute the in 

Figure 6. In ail cases the precedence of operations should be preserved to guarantee the 

correct computation. These different orderings result in dinerent number of delays needed 

for each variable, in another word, there will be less number of memory locations needed 

to keep the variables in between the iterations depending on this order. 

With the labeling of the edges and inputs of the buttedy in Figure 9, the foliowing 

tables tabulate the number of Z ' s  needed on each edge based on different computation 

order. Basically, if the delay is more than one, the variable is stored in memory, otherwise 

it is saved in a register that is represented by a recursive edge. These registers d o w  

fuaher pipelining of the core graph and data-path, thus reducing the cycle time. 

Table 1 .  The ser of inpur/ou~pur connections ro the inputs & outpuis the burterfly 

Fust delays for column-wise scan is extracted, and then the same is done for other 

types of scan. 
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Figure 10. Differenr scan orders for rhe sample F R  gruph 
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By studying these scan orders it is possible to further pipeline the data-path. If the 

number of Z'S are more than one in all iterations. the number of Z'S can be reduced by 

one and that Z' be moved inside the data-path to use it as pipeline register. This will 

drastically decrease the cycle time of the core data-path and the throughput of the system 

is increased by parailehg more operations. 

- -- -- 

Figure I I .  Retiming and pipelining ilfustrated 

Now consider the data-path core shown in Figure 11 with two of the recursive 

edges with weights 2 and 3; shown as black-filled boxes and ako assume that it is possible 

to move in as rnany Z'S. By moving the Z 'S  inside the data-path, the execution tirne of the 
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core is decreased. But it is not possible to move al l  of the Z'S in, othenvise the iterations' 

interdependency WU be lost and the correct algorithm would not be iinplemented. This is 

because this data path is denved by folding the original signal flow graph. The only way to 

preserve the algorithm correctness is only to move in one les than the minimum number 

of 2% at each iteration; Le., to use the minimum of the weights at each column. 

3.6. Scheduling the Graph 
Next the FFT exampb is investigated and the reads and the writes to the e x t d  

memory for the fïrsst type of scan (column-wise) shown in Figure 10 is extracted With the 

previous discussions in muid, only one Z' can be moved from each edge in and used as 

pipeline register inside the data path. Having done this, the operations (reads and wrïtes as 

in Figure 12) can be scheduled. It is assumed that, it is possible to have two simultaneous 

reads and two simultaneous writes; either by having a dual-port memory architecture or by 

having two memory subsystems. 

This m e r  reduces the cycle time of the execution of the whole algorithm. But if 

this is much too expensive, the reads and writes could be scheduled sequentially one afier 

another. 
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v - lwrite = 1 cycle) 

Figure 12.  Scheduled FFT wirh nvo-stage pipelined butrerjly core and variable lifefimes 

From this discussion, it can be seen that pipelullng the core shortens the total 

execution cycle of the algorithm Higher levels of pipelùiing are also possible by 

introducing what is cded a no-op node to the graph on edges that have the lest  number 

of 2%. By introducing new nodes hto the graph, the number of Z'S that can be mved 

inside the core to be used as pipelined registers could be increased. Higher levels of 

pipelining allow to remove the dependency among input, output operations and also the 

core. This simplifies the task of mernory bank assignment because it is no longer needed to 

know the schedule of the operations in the graph and al l  the operations, including read and 

wnte to the memory, having the mobüity of the whole execution cycle. 
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Chapter 4 

4. Memory Bank Assignment 
In this chapter, explanation is given on how to assign a rnemory bank number to 

the edges of the graph so that the memory bank usage is balanced and aiso on how to 

simphfy and reduce the Iogic needed in the controiier of the final architecture. The 

example graph used in this chapter is a radix-4 16-point FFï (refer to [45] for detailed 

explanation of FFI'), assuming having oniy two memory banks. The graph is shown in 

Figure 13. 

-- - 

Figure 13. Radù-4 16-poinr FFT 

An in-place storage scheme is assumed; Le., the nnal result of the FFT is assumed 

to be stored in the same place as the original input data, but the difference with the in- 

place storage is that the intermediate results wili not be stored in the same place as the 



www.manaraa.com

input data. Therefore, in the p p h  of Figure 13 the output edges are assumed to be 

wrapped around and connected to the corresponding inputs of the graph. The task is 

divided in two parts. One is the resource balancing, which in this case is the balancing of 

the memory banks usage. The second is to siniplify the controlier that is going to be 

mapped into a single or multipIe FPGA system dong with the data path itself. One way to 

simpl@ the controller is to reduce the number of control words used in the controiler. In 

most of the signai processing dgorithms, especially those with Iarge storage needs and 

image processing applications, one can find a reguiarity in the usage of rnemory. If one can 

exploit and take advantage of this reguiarity in the access of the memory banks, the 

controller words that address the memory could be reduced substantially. 

4.1. Exhaustive Search of the Solution Space 
In the first attempt in the memory bank assignments, an exhaustive search routine 

was developed to do these two tasks at the same tirne. The assumption is that tbere are 

two memory banks and a memory bank should be assigned to each edge in the graph. With 

two memory banks, a binary variable is used to distlliguish between the two; Le., a 'O' 

means the first mernory bank and a '1' means the second memory bank. There are 32 

edges in the graph and they are numbered fkom O to 31, and a 32-bit variable is used for 

the assignment of all the edges and each bit in this number represents an edge in the graph. 

For example a value of Ox33CC33CC means edge-O is assigned to bank-O, e d e l  to 

bank-O, edge-2 to bank-1, and so on. It is assumed that the final arçbitecture wiil have 

one processing core for the $-point FFI', four inputs and four outputs. The bïnary number 

assigned to the edges of the graph make a 4-bit binary number at the input, and a 4-bit 

binary number at the output of this 4-point FFT at each iteration of the algorithm. This is 
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caiIed a symbol, a wrïte syrnbol for the output number and a read symbol for the input 

number. 

I I .............. 

I . S .  

Edge Nurnber: . . -  
S . .  . . .  .---.----.--.. 

- -  - 

Figure 14. Picrorial represenration of a symbol 

The algorithm tries to assign symbols (in this case nom OxOûûû to Ox 1 1 1 1) to the 

reads and the writes of each iteration, so that, first the symbol assigned is balanced in the 

number of Os and 1 s it has (this balances the rnemory bank usage) and second, the number 

of symbols for reads and those for the writes are minimized. The cost funchon used is: 

(number- of - read- symbols) + (nwnber- of - write- symbols) + 

The exhaustive search starts counting fiom OxOOOOOOOO to OxFFFFFFFF and at 

each step checks the cost function and accepts the assignment only if the current cost is 

Iess than the pervious caiculated cost. 
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4.1.1. Implementation Details 
The algorithm is irnplemented in C and is given in Appendix A. At the beginning of 

the program two arrays, a source edge and a destination edge with size of the number of 

edges in the graph, are declared and initiaiized with the node nwnber that the edge 

connects to. Another array is initialized with the input and output edges that coanect to a 

node. Two other structures are declared for an edge and a node. The edge has three fields, 

source node number, destination node number and the bank number assigned to it. A node 

has two arrays of input edge numkrs and output edge numbers. 

A syrnbol is deiined to have a cost, a count of how rnany t b s  it bas been used 

and wherher it has k e n  used or not. Because each node has four input and four outputs, 

there are sixteen possible symbols whose costs are defhed in the qmbol_costs array. In 

the symbol's binary representation, if the nurnber of ones and zeros are balanced (two 

each), the symbol cost is O. If there are 3 oneslzeros and 1 zero/one in the symbol, the 

symbol cost is 1 and if there are 4 onesheros in the syrnbol, the symbol cost is 2. 

There are 32 edges in the sample graph and a 32-bit number is used to represent dl 

the memory assignments for the edges. A zero means that bank 'O' is assigned to that edge 

and a '1' means that bank 1 is assigned to that edge. The algorithm starts by initialking the 

edges and nodes of the graph and then initializes the syrnbol table. Then the exhaustive 

search begins that counts fiom OxOOûûûûûû to 0- and at each iteration checks 

the current cost. If the current cost is less than the latest caiculated cost, the program 

reports the last cost, the current cost, the number of different words used and the cwrent 

assignment. 
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4.1.2. Results from the Exhaustive Search 
This exhaustive search was very slow and tune-consuming, so a new technique 

based on the integer hear programming (ILP) formulation and using the GAMS solver 

was used and will be shown later. The results of the assignments for radix-4, 16-point FFI' 

and w o  memory banks summarized in the following table. 

4.2. Formulating the Problem in ILP 
By formulating the problem in ILP, the search space is basically Limited fkom al1 the 

Read Symbols 
(Hex) 

3, C 

infeasible solutions to some that may be a solution but not necessarily the best one. Search 

space is al1 the possible assignments of rnemry banks to the edges. In the exhaustive 

Table 2. Resulrs for radir-4, I6-point F R  und nuo memory b& (exhausrive search). 

Write Symbols 
(Hex) 

3, C 

search, there were no means to isolate those assignments that wili cost too much* long 

before checking al l  the assignments. The checking routine had also too much overhead. 

Once a formulation is derived, the ILP solver does a branch and bound through the 

bounded search space and generates a cost. The coosaauits written, try to minunize this 

Cost of Read 
symbols 

O 

cost and arrive at an optimal solution. Depending on how the constraints are written. the 

solver may reach the absolute best or a local optimum answer. 

Now a detailed explanation of this formulation is given. In this formulation, four 

static sets are used. 1 is the set of iteration indices or the nodes that are executed at each 

step. in this case fiom O to 7. S is the set of symbols or  the dBerent assignments to the 

edges, in this case fkom O to 15. E is the set of edges, the edges are numbered fiom O to 

3 1. The inner edges are nurnbered 6rst fkom the output of node O. And B is the input or 

Cost of Wnte 
S ymbols 

O 

Totai Cost 

4 
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output number, a number is assigned to each input port or output pon to the core; Le., O 

to first input. 1 for the second input and so on. The same thhg is tnie for the outputs. So 

in this case B is from O to 3, because there are four inputs and four outputs. 

There are sets that define the edges of the graph using the writer's iteration 

number (Wi), reader's iteration number (RI), writer's output (bit) number (BW), and the 

reader's input (bit) number (BR). There is a dynamic set called EDGE-EXTS(E, 1. J, BI, 

BJ) that has a member for each edge defined m the graph, this dynamic set is used in the 

constraints. Two bïnary variables W-X(I, S) and R-X(I. S) are defined. Every '1' 

assigned to W-X means symbol 'S' is assigned to the write at iteration '1'. and a ' 1 ' 

assigned to R-X means symbol 'S' is assigned to the read at iteration '1'. 

As can be seen in Table 3 and Table 4, only one symbol can be assigned to each 

iteration whether it be a read operation or a write operation. From this, the îkst two 

constraints can be written, as wiIl be seen Iater (conscraints 1 and 2). 

Table 3. Sarnple assignments of symbols to iterations and nodes' ourpuu 
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Table 4. Sarnple assignmenrs of symbols to iterarions and nodes' inputs 

The input and output syrnbols that are used are reflected in the W-SYM and 

R-SYM binary variables as a '1 ' (consh-aints 3a, 3b, 4a and 4b). If the symbol is not 

assigned (never used). the associated W-SYM or R-SYM wül be '0'. Using these two 

variables, the total number of read and write symbols used (variables W-SYMS and 

R-SYSMS), that contriiute to the final cost fiiaction (constraints 5 and 6) can be counted. 

Assigned to each syrnbol is a corresponding cost due to its distance fkom the average of a 

balanced memory access; i.e., for a two-bank memory system, writing or reading four 

variables into memory should send two variables to one bank and the other two to the 

other bank. One simplification to the problem is made by considering the nature of an FFT 

algorithm. It is known that one always does read or write complex variables havuig a real 

part and an irnaboinary part. Because these two parts are always read and written at the 

same tirne, they can be overlapped or merged, assuming only one single variable is read or 

wricten. This reduces the size of the syrnbols used. 

The cost of every symbol is calculated and set as a constant parameter array. called 

SYM-COST. Consaaints 7 and 8 compute the total cost of write (W-COST) and read 

symbols (R-COST). 
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1 

R -  X ( I , S )  - R-SYM ( S )  2 O;VS 

Z[W-X(I ,S )  * BANK-IS-x(S, BI)]  = C[R-X(J ,S)  *BANK-IS-x(S,BJ)] 
s S 

; VE,I + J ,  BI + BJ,x = TotalBanks- 1 

Cost = (W- SYMS + W -  COST) + ( R -  SYMS + R- COST) 

Table 5. Consrrainrs used for the 16-point FFî memory b& assignment. 

To sumrnarize, constraints 1 and 2 force the assignment of at most one -te or 

read symbol at each iteration. Consuaints 3 to 8 count the total number of symbols and 

caiculate the cost associated with them Constraint 9, which is written for every edge, 

forces the source and destination of an edge to be assigned to the same memory bank. The 

number of constraints of the form of constraint 9 is one less than the number of rnemory 

banks used, in the case of two memory banks, one is enough. For m r e  rnemory banks this 

constraint repeats with the difference that BANK-1s-1 is replaced by BANK-IS-2, 
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BANK-IS3 and so on. These Boolean type variables are tme ('1 ') wherever the 

corresponding bank in the symbol's digit is one, two, and so on. 

To calculate the BANK-ISx(S, B), there is a constant table caiIed BITS(S,B) of 

the symbol S in decimal and its equivalent value in base TotalBanks. This is because a 

number is assigned to each edge that is fiom O to TotalSanks-1, which are digits of a 

number in base TotalBanks. Table 6 shows how the constant table of BITS(S, B) helps 

compute the Boolean BANK-1s-x(S, B). 

BANK_IS-I ( 5.1 ) = TRUE 
BANK-IS-2( 5,  O ) = TRUE 

BANK-1s-1 ( 6.1 ) = FALSE 
BANK-1s-1 ( 6,2 ) = FALSE 

Table 6. Base TotalBanks equivaienr of symbo/s inl6-point FFTanb 3 memoq bankr 

The total cost is calculated in the formula number 10, and it is the sum of total 

number of write symbols, total nurnber of read symbols, total cost of write symbols and 

total cost of read symbols. This value should be rninunized and this is the objective 

function. The ILP solver tries to minunize this and give the best assignment. 

The constraints let the solver to reach an answer if it exists. Adding more 

constraints makes the solver arrive at an optimal answer in much Iess amount of t h e .  
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4.2.1. Automatic Generation of the ILP Source for Arbitrary FFT' 
A C program bas k e n  written that generates the ILP source me for an FFï with 

arbitras. nurnber of points and radix. The input to the program is the number of points in 

the FFT, the FFI3 radix and the number of memory banks. 

The program is very helpful when deahg with bigher number of points. The k t  

part of the ILP prograrn is very similar to the exhaustive search algorithm. The graph 

needs to be constructed with all  the edges and nodes in it. The syrnbol table and their 

associated costs shodd aIso be constructed. The program makes Wnting the ILP program 

easier by generating ail the source and destination edges and all the necessary data needed 

for the ILP formulation. 

Code generators are very popular in software design so it is in the Electronics 

Design Automation. One can wnte a prograrn to generate another program for another 

compiler or design tool. This C program did take the hassle off specifying the graph edges 

and data in ILP. 

4.2.2. Results from the ILP Formulation 
The resubs of the assignments for radix-4, 16-point FFT and two memory banks, 

radix-4 16-point FFT and three memory banks, radix-8, 64-point FFI' and two mexnory 

banks are sumrnarized in the following tables. 

Read SymboIs Cost of Read Cost of Wnte I Total Cost 
Symbols 

Table 7. Resulrs for radü4. 16-point FFT and nvo memory banks. 
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Read SymboIs 
(Hex) 

3,s- 7, A, C, 
ID, 33 ,3B 

From these tables it can be seen that, the Iess the number of read and write 

symbols, the less the complexity of the address generators and control logic. It c m  &O be 

Table 8. Resulrs for rudu-4. 16-pohr FFT and rhree memory banks- 

Wnte Symbols 
(Hm 

4,5,7, A, IE, 
30, 37,40 

- -- 

y Read Syrnbols 
(Hex) 

17, ES 

seen that balancing the memory accesses may be more costly in regards to the total cost 

considered here. 

Table 9. Resulrs for radu-8.64-poinr FFT and nvo memory bahnlcr  

Cost of Read 
symbols 

O 

 rite Symbols 
(H-1 

17, €8 

The ILP solver reaches the solution in much less tirne than the exhaustive search. 

Cost of Read 
symbols 

O 

The L P  formuiation and the method proposed are a good start at reaching an algorithngc 

method to assigning banks to data flows of an algorithm. Heuristics should be used to do 

Cost of Wnte 
Symbols 

this at frrst and then corne up with the proper algorithm. 

Cost of Write 
S ymbols 

O 

Total Cost 

In the next chapter, the process of address assignments to each memory bank is 

explained. 

Total Cost 

16 

O 4 
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Chapter 5 

5. Memory Address Assignment and Generation 
In this chapter, a technique to assign addresses to intermediate variables is 

discussed and &O different techniques to build a hardware-based address generator is 

explored. One can find different techniques presented in the literature. Designing a flexible 

and efficient address generator is very diffiicult. The method used may also not be very 

useful in generating addresses for different algorithms. 

5.1. Address Assignment 
There has been many studies on the assignment of rnemory addresses to variables 

(register allocation) in the filed of Computer Science. A number of algorithms have been 

developed mosfly for use with high-level language compilers. The commonly used 

aigorithm is the graph coloring [25], [26] and how to 6nd the minimum number of colon 

needed to properly color a graph. This minimai number of colon is also called the 

chromatic number of the graph. 

Basicaily, coloring of a aven graph G = (V. E) with K colors, where V is the set 

of vertices, E is the set of edges in the graph and K S IVI, is to fkd function f: V + (1, 2, 

. . ., K} such that f(u) # f(v) where (u, v) E E. It can be said that colorhg of a graph is to 

assign a color to each of its nodes so that the nodes comected by an edge have different 

colors. 
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Register docation is done by first creating a regisrer intaference graph, wbich is 

a graph that bas V nodes that represent the variables and there would be an edge between 

two variables that are alive at the same time during the computation- These nodes are said 

to interfere with each other; thus the name interference graph. M e r  this step, for a limited 

number of K registers, one should fïnd a K-colorable graph. 

The graph-coloring algorithm 1271 belongs to the NP-complete set of problerns 

that rnay result in an impractical amount of computation that is needed to find out the 

number of colors. For this reason and the fact that for f d y  complex DSP algorithms with 

large number of data stored in rnemory, the graph c o l o ~ g  algorithm wodd be unrealistic 

to be used for address assignrnents for large nurnber of registers, other methods should be 

used. The graph-coloring algorithm is mostly used in high-level language cornpilers for 

CPU architectures with srnd number of registers or for register assignment in synthesis of 

an architecture with few number of registers. 

For different algorithms, one can exploit the regulanty of the access and find a 

good address a~si~gment. As was seen before, the access scheme codd &O affect the final 

architecture and the maximum number of pipeline levels. There is an efficient storage 

scheme proposed in [1 SI for assignment of addresses for a ladix 2 RT. A better storage 

scheme will be seen later that does not have the limitations of this assignment. 

5.2. Address Generation 
One of the chailenging tasks after register allocation and rnemory address 

assignment, is the address generation. Once all the addresses of source, intermediate and 



www.manaraa.com

destination variables are known, one can corne up with different schemes to generate those 

addresses. There are two schemes for generating addresses for a specific algorithm. 

5.2.1. Software-based Address Generation 
In general, loop constructs or dedicated constant lookup tables can be used to 

generate the addresses for a specific algorith A dedicated microcode sequencer or small 

rnicrocontroiler implemented in hardware could execute the program to generate the 

addresses. This program could be hard coded h o  a ROM and even for f lexi i ty  in 

rewntable memory. The advantage of this scherne is that the program that generates the 

addresses could be modined to generate a new set of addresses for irnplementing another 

algorithm The disadvantage is that special consideration is to be made in designing a 

dedicated microcontroller circuit. 

Dedicated Port J 

Figure 15. Sofnvare-based (microcontroller) address generator 

Another use of software is for analyzing the addresses and hdhg  a regdar pattern 

and to exploit this pattern to designing a much simpler and yet workable address generator 

in hardware using dedicated logic. 
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5.2.2. Hardware-based Address Generation 
Generating addresses for a specific aigorithm is very important and couid become a 

bottleneck in execution of the algorithm There have been many studies to corne up with a 

scheme to generate an address of a variable in memry on the fiy. For specioc algorithais 

one can h d  simple methods to generating these addresses. The comrnody used rnethod is 

using loo k-up tables, which is very costly on the memory requirements and is mostly used 

in cases were the number of addresses are minimal- 

Another method is the use of dedicated cornputhg hardware to generate the 

addresses on the fly. One can construct an address generator by using counters plus 

additional adderfsubtractor, bit-shufflers, some logic andlor look-up tables. There bave 

been many shidies in designing a GAG" ([28], [29], 1301, [3 11). 

For many applications, one can exploit the access regularity of a specSc algorithm, 

by using some transformations and changing the access order of the algorithm to take 

advantage of a much simpier address generators. In one study [32], by baving al the 

addresses of the algorithm in question, one can generate them by using sirnple counter, bit 

shuffling and some logic and/or look-up table if the number of addresses is a power of 2. 

Counter Bit Shuffler 

+ Output Address 

l9 GAC = Genenc Address Gencrator 

45 
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Figure 16. Simple address generaror 

Figure 16 shows chis simple address generator obtained by using this algonthm. 

The algorithm stans with a list of addresses (whose total number is a power of two) to 

generate. It then s t m  with the fmt bit of these addresses and follows these steps: 

1. If the list is aii zeros or aii ones, the process fcr this bit is done and this bit is 

smck and '0' or ' 1 ' whichever applies. 

2. Split this Est in h a .  

3. If the two halves are equal, go to step 2 otherwise continue. 

4. If the two haives are not logicai inverse of each other, the sequence is a serni- 

random sequence and is dealt separately. Otherwise continue. 

5. If the two haives are equai, then if they are all ' 1 ' the counter bit is directly 

connected to the address bit, if it is 'O' the counter bit is inverted and connected 

to the address bit- 

6. If the two halves are n9t equai, the counter bit is ExORed with whatever bit is 

found by going to step 2 again. 

For a semi-random sequence, basically the bits that are '1' shouid be decoded. The 

basic idea is to try to match (decode) the counter bits or a combination of them using 

inverters, AND, OR and XOR gates. 

This algorithm has been translated to C based on the original paper [32] and is 

provided for use with the example design in the next chapter. 
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Chapter 6 

6. Using the Techniques in an Example Design 
In this chapter, a demonstration is made of most of the techniques discussed, to 

impiement a 1014-point cornplex FFT hardware. Fust, the architecture to be irnplemented 

is presented, then deeper aspects of the architecture is shown., and nnally different modules 

used and how to implement them are discussed. The design is cornpletely done in MiDL 

and the results of simulation and synthesis is presented later. 

6.1. Which FFT Algorithm Implementation to use? 
In chapter 3. Figure 6, an implementation of the FFï algorithm cailed Decimation- 

in-fiequency that is known as Cooley-Tukey implementation was seen. The FFT is break 

down of the DIT'' of a finite sequence { x[nJ ); O n L N-l into smaller DFTs and 

combining them to get the final resdt. The DFï itseff is defined as: 

The complexity of a DSP algorithm is determined by the number of multiplication 

operations to be done. The number of multiplication operations in a DFï is of 0(FJ2) and 

" Discrete Fourier Transform 
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for an FFT is of O ( N l o g N ) ,  which &es it more suitable for implementation in 

hardware or software (refer to [45] for detaüed explanation of DFï and FFI'). 

There are many ways to break down a DR. One is caiied a decimation in time and 

the other is decimation in bequency. The two butterflies used for each of these are shown 

in Figure 17. 

Decimation-in-Frequency 

(a, ail / (M xil 

(b* bi k WC. 
= (a,  -6 , )  * wrk -(a, -bi) *w4 

Figure 1 7. Decimation-in-tinte and decimarion-in-frequençy burrerfles 

As can be seen, the number of operations in each implementation is the same but, 

the decimation-in-fkequency is more suitable because the multiplication is done after the 

additions. Usually if multiplication is done hrst, the results would grow in nurnber of bits 

needed to represent them and because most implementations are based on hed-point 

addition and multiplication, the results need to be rounded. This rounding of the results 

introduces error and noise in the system. So the FFI' hardware based on the decimation- 

in-fkequency FFï is selected for this demonstration. 



www.manaraa.com

6.2. An Efficient Architecture for a 1024-point Complex FFT 
As shown in chapter 4, the optimal number of memory banks needed during the 

cornputation of a radix-2 1024-point FFT with one butterfly is two. So based on this, two 

distinct memory banks are needed to hold the input data, the temporary intermediate in- 

place results and hally for the storage of the FFï result. Because a complex FFI' engùie 

is to be implemented, twice this amount is needed to store the real and imasinary parts of 

each value. So the tord number of memory banks needed is four. 

An algorithm with a single butterfly was selected for implernentation. This results 

in the srnallest area possible for this design. If more performance is needed out of this 

design, more buttedy elernents cari be assigned that calculate more intermediate values at 

the sarne t h e .  With careful design and scheduhg, one can achieve greater performance 

by sacrificing more silicon area. 

In chapter 3, an architecture was seen that cm be used to implement most signal 

processing algorithm. Rehïng that architecture for tbe complex FFI', the following 

architecture is arrived at. 
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WAG l - :-* 

Figure 18. P roposed architecrure for complex FFT 

There is only one buttedy computation engine. niere are also four dinerent 

address generators used to address the source operands (both real and ïmaginary) and the 

destination operands (both real and irnaginary). Another memory holds the twiddle factors 

that would be addressed with another address generator. 

6.3. FFT Signal-fiow Graph and Memory Access Pattern 
The Cooley-Tukey Unplementation of an FE, accesses the source variables in- 

order and stores the intermediate results in place of the source variables. The starthg point 

is a Cpoint FFT, which is increased to 32-point FFï to find a regular pattern for storage 

and accesses to those variables. 

The arrangement of the variables of a 4-point and an 8-point dechation-in- 

frequency FFT and their corresponding signal flow graphs are shown in Figure 19. 
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3-point d i x - 3  FFï rnemory access for a single butterfly and single memory bank 

8-point radix-2 FFT niemory access for a single bunefly and single memory bank 

Figure 19. Cooley-Tukey FFT access parrerns 

As c m  be seen the source and all the intermediate variables are stored in increasing 

order fkom zero and the results are stored in bit-reversed order. In the corresponding 

signal flow graphs, the cornputation order is ftom top to bonom and 6rom left to right. 

This storage and access scheme is not suitable for use with two memory banks and a single 

butterfly engine. The reason is that, with two storage banks, collisions should be avoided 

to speed up the memory access. Otherwise, when collisions or memory access conflicts 

occur, the memory should be accessed consecutively to retrievelstore two 
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source/destination variables. Now a storage and access scheme should be found that is 

more efficient and easy to implement in hardware. 

6.4. Manipulating Memory Access Patterns 
In general, to avoid collisions in multiple rnemory processing engines, it is best to 

interleave the storage of variables. B y interleaving, one means storing variables accessed at 

consecutive points in tirne in different banks of mernory. Interleaving does not dways 

alleviate the memory conflicts in every algorithm and a more detailed study of a specific 

algorithm is needed to devise a good storage and access scheme. 

In [14] and [ 151, an efficient way to store intermediate variables of a radix-2 R 

algorithm is proposed. In that paper, the suggested method by authors results in two 

different access patterns. One is a stride 1 and the other is bit-reversed, They do not show 

al i  the iterations of the computation. From the storage order they suggest, the first pass of 

computations is with no conflicts, but the second pass will cause some conflicts. 

The storage and access scbemes are rehed  to have zero conflicts and simple 

address generators. The data-path is ais0 pipelined to achieve the fatest execution cycle. 

The zero conflict scheme makes sure this pipeline is not starved or stalled to get the 

maximum performance. 

To do this, one should start îkom the nodes that produce the last results and start 

assigning addresses to those nodes keeping in mind to interleave the accesses. Then try to 

minimize or even remove confücts by simple swapping using multiplexers and additional 

registers. This can be derived f?om simple observation of the access patterns. This 

architecture is now generalized to any number of points in the FFT as foliows. 
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First lets look at the addresses and uy to fïnd their patterns. Figure 20 shows the 

addresses for a 4-point and 8-point radix-2 DIF FFï. 

Samples in memory afier each iteration 
BO B 1 l B O  B l ( B 0  BI 
O 2 1 0  i l 0  2 

3-point radix 2 FFT memory access for a single butterfiy and two memory banks 
-------------------------------------------------------------------------------- 

I memory after each iteration 
BO BI IBO BI II BO BI 

8-point radix 2 W memory access for a single buttedy and two memory banks 

Figure 20. Modifieci accesses for 4 & 8-poinr Cooley-Tukey FFT (nu0 memory bu&} 

From this figure and the addresses, it seems that dl the writes are bit-reversed and 

ai l  the reads except the l m  one are sequential (strïde I )  and the last read is bit-reversed. 

To c o n f i  this, the 16 and 32-point FFïs were tried and the same conclusion was drawn. 

From these tables, it is c1ear that to write the results of the butterfly back to 

memory at the proper location, the results of two consecutive iterations need to be 

scheduled so that results fiom one iteration is sent to the same memory bank and the next 
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iteration to the other memory bank. The final architecture is shown in Figure 2 1. As can be 

seen, a single butterfly engine is foiiowed by a skew buffer that routes the results to a 

diffkrent banlc. There are four registers and two multiplexers in this skew buffer to skew 

the results so that they are available for writing to the address provided by the address 

generators based on the address assignrnents doue in Figure 20. The details of this skew 

buffer is presented in the next chapter. 

Figure 2 1. Final FFT architecture with skew buffer regkters 

The controuer is responsible for orchestratuig the order of operations and enabling 

different resisters at different cycles, controlling the multiplexer select hes ,  and the 

address generators. 

Next chapter will discuss the data path and control logic in detail and present 

different aspects of VHDL design. 
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Chapter 7 

7. Detailed VHDL Design 
In this chapter, all the necessary steps fÏom specification to implementation of a 

radix-2 1023-point Cooley-Tukey FFT engine with two memory banks is detailed. The 

design is compIeteIy done in VHDL and successfully fitted on a Xilinx Virtex 

V150PQ240-6 [33]. The synthesis is done using the Synplicity's Synplify tool and 

simuIations are done using ModeITechnology's Modelsim VHDL simulator. 

The data path design is detailed first and dinerent tradeoffs made in the process are 

shown then the control logic design is explained. 

7.1. Design of the Data Pafh and Its Hements 
In most signal processing algorithms especially in Digital Signal Processing (DSP), 

there are many basic elements that are used to constmct the data path of a system The 

basic eIements of a DSP system are addition, multiplication and multiply-accumulate 

operations. There are other operations that relate to DSP system in general, but the ones 

mentioned above are the rnost basic and widely used in any DSP aigorithm. 

To improve the aredperfonnance merit of a system, one should first do 

optiMzations at the highest level of a design, namely: specification and architecture. After 

architectural optimizations, the system's building blocks or components should be 

irnproved. This improvement wiii, in effect, enhance the overail system operation. 
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The most costiy operation in a DSP system is a muitiplication operator. A 

multiplier module is both area consuming and &O sluggish in the performance aspect. 

Therefore, multiplication is the main bottleneck in the arealperformance of a data path and 

can change the characteristics of a system in both aspects- 

Choosing the best components in general and the best multiplier for any DSP 

system, is the best strategy to follow for improving the system performance. In the 

following sections, different architectures for an adder and a multiplier, wbich are the basic 

building blocks of the FFT engine, are reviewed- 

7.1.1. Addition Schemes 

Adders could be categorized into the foflowing: 1-bit adders, carry-propagate 

adders (CPA), cany-save adders (CSA), and multi-operand adders [34]. 

The 1-bit adders indude Half-Adder (HA) and Full-Adder (FA). In the carry- 

propagate adders the carry bit to the next stage of an n-bit adder is denved nom the 

previous stage's carry-bit and the current input bits with some additional logic. Carry- 

propapate adders include npple-carry adders (RCA). cany-skip adders (CSKA), carry- 

select adders (CSLA), carry-increment adders (CIA), conditional-sum adders (COSA), 

carry-lookahead adders (CLA), and parallel-prefix adders (PPA). 

The paraiiel-prefix adders are the most flexible ones that include a preprocessing. 

carry-lookahead, and postprocessing step. They c m  have the area and speed 

characteristics of a i l  the adders mentioned above. They are basically a universal adder 

architecture with aii the area-deiay trade-offs. There are three different variations of PPAs. 
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They are called Kogge-Stone implementation (PPA-KS), Skansky ïmplementation (PPA- 

SK) and Brent-Kung implementation (PPA-BK). 

Carry-save adden (CSA) are three-operand adders that do not do any carry 

propagation and just Save (pass) aü the carry bits calculated. Multi-operand adders can be 

comprised of the carry-save adder stages and carry-propagate adder stages to compute the 

final addition. These adders can be constructed in array or tree (Wallace tree) topologies. 

Hdf Adder i Full Adder Ripple Carry Adder (RCNCPA) 

cou, 

p, = 0; ci 4- C,.I and cbl selected 
Pi = 1 : C, -+ c,- 1 and ci. 1 skipped 

Carry-s kip Adder (CS KA) 
_ . . . . _ _ . _ . . . . _ . . . . _ _ _ _ _ . _ _ _ . _ _ _ _ . _ _ . . . ~ . ~ ~ ~ ~ . ~ ~ . . . . . . ~ ~ ~ ~ ~ ~ . . . . ~ - _ . ~ ~ - _ . _ _ - _ - - - _ _ _ ~ ~ ~ . ~ ~ ~ * ~ . ~ . ~ ~ ~ ~ . ~ . ~ ~ . . . - - . - . - - - - - . . - . * ~ . . ~ - .  

Preprocessing: 
gi = ai . bi 
pi = ai @ b; 

Carry-Iookahead .....-.-- .) Rcfix Aigorithm 1 
cou, Preprocessing: ++ ...---.-- .) 1 - - * * * - * -  

SI = pi . Ci 

Parallel-prefix Adder 

Figure 22. A few diferenr d e r  structures 

57 
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The ripple carry adders are almost the srnaiiest d e r  CSKA adders and the slowest 

ones, PPA-SK / PPA-KS and COSA are the fastest adders for 64-bit additions- 

Exploring aii these structures and choosing the optimum area/perforrnance needed 

depend on the target technology that is used. For ASICs, these structures are aJl viable 

solutions and any of them can be implemented. The selection depends on the design 

specifications and cowtraints. These modules should preferably be implemented and put in 

a iï'brary that a high-Ievel symhesis tool has access to. Then the area/speed selection would 

be the assigrment part of the high-level synthesis. If the selection of the architecture is 

done at a higher level, the tool would also be able to insert pipeline registers to speed up 

the performance of the adden. yet preserve the original algorithm. 

~ r e a  Adder Relative Area 

Figure 23. Areas for differenr adder architecture 
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Figure 24. Speed for differenf adder architectures 

The case is completely different for FPGAs. ALmost al l  FPGAs have dedicated 

cany-logic resources to speed up the adders, subtractors, incrementers and counters. 

These carry chahs can go up a d o r  down the FPGA die but not in all directions. If the 

regular routing had k e n  used instead of these dedicated routes, the delay associated with 

arithmetic operators would be big. 

Ali these architectures are presented to show the different vade-offs and 

architectures possible. One should refer to other references for complete discussion on 

specific algorithm. 

7.1.2. Multiplication Schemes 
As said More, multiplication is very costly regxding both area and speed. There 

are many architectures 1351. [363 that help -ove the speed, but at the expense of 

increased area. 
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The following are some examples of different multiplier architectures: 

1. S hifi and add and bit-serial multiplier 

2. Booth and modified-booth algorithm 

3. Wallace m e  multiplier (using CAS and CLA) 

4. Non-additive multiply moduius (NMM) using Wallace tree and CPAs 

6. Array (Braun) Multiplier 

7. Baugh-Wooley multiplier 

8. S ystolic array multiplier 

9. Constant coefficient multiplier 

10. Disuibuted arithmetic multiplier (a special case of constant coefficient 

multiplier) 

1 1. Partial product lookup table based multiplier 

The shifr and add multiplier is based on a single adder with three regirters and 

some control circuitry. One register is used as the multiplicand and another for the 

multiplier, which wili be shifted at each clock tick, and the last register that is an 

accumulator and holds the partid result and the 6inal result of multiplication. This 

multiplication scheme can be done with senal input data. 
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Shi6 and Add Multiplier i LUT-based Multiplier 

H 
B 1 : -  Result 
000 P c = P :  
001 P < = P + A ;  
010 P < = P  + A; 
011 P<=P+2*A;  
IO0 P <= P - 2*A: 

1. Extend B by one bit at right 
2. Sien extend A by size of B 

Modified Booth 
Algorithm 

3. Check thethree bitsof B(1), B(0) and B(-1) 
4. Compute new partial result based on the lefi table 
5. Shift A left by 1 bit 
6- Shift B right b y 2  bits 
7. Repeat steps 3 to 6 N/2 tirnes where N is the size of vector B 

-- - - 

Figure 25. Diflerent muliiplicarion archirecrures 
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Figure 25 shows four difTerent popular multiplier architectures. The fint one is a 

shifi and add operation that is very area efficient. The other one is a lookup table based 

6x6 bit multiplier that divides the two input vectors A[5:0] and B[5:0] and forms partial 

multiplication results and adds them together. By using four 3x3 lookup tables that hoId 

the values of multiplication of 3-bit by 3-bit numbers and a few shifi operations, which use 

no logic to irnplement, this multiplier forms the final result. 

The third multiplier structure is a modified booth multiplier, which also- like the 

lookup table one. uses a divide and conquer scheme. This algorithm partitions the n-bit 

multiplier into n/2 3-bit fields with 1-bit overlap. Then based on these three bits it does an 

adasubtract by multiplicand, add/subtract by twice the multiplicand and no operation. 

M e r  n/2 iterations the final result is ready. This multiplier can be pipelined at every stage 

of operation up to n/2 levels. This is a very efficient multiplier in ASIC implementations. 

The last multiplier is an array (Braun) signed multiplier that is the exploitation of 

the multiplication operation expanded into shifts and additions. The fist stage is a series of 

AND gates that ANDs the least signincant bit of multiplier by ail the bits of the 

multiplicand. The next stages are a senes of adder-multiplexers that pass the previous 

stages partial result if the corresponding bit of the multiplier is zero, otherwjse it is added 

to the multiplicand. To perform signed multiplication, adders are chosen to be one bit 

larger and the operands are sign extended and also the last stage should be a subtarctor- 

multiplexer stage. This multiplier is very easy to impIement both in ASIC and FPGA. 

Although it has more area and it is slower than the Modified-Booth-Recoded multiplier, it 

is faster and more suited to FPGA implernentation. 
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Pipluiing this multiplier is a bit more complicated and registers should be put at 

different places so that the overail Uming (amival of related data) of the multiplier does not 

change and the correct result is produced at the output. It is possible to do n-level 

pipelined array multiplier where n is the number of bits in the multiplier. If the number of 

bits in the multiplier and multiplicand are not quai., there is a trade-off between choosing 

more adder bits and more levels. 

In DSP appkations there is also a mote domutant operation that is the multiply 

accumulate of a number of vectors by another constant vector o r  the inner product of a 

M 

vector with another constant vector. This is shown by: y = A, X, 
k=l 

In thiç equation Ai; is the constant vector and Xi, is the input vector. This operation 

is best done with what is called Distributed Arithmetic (DA). Ln DSP algorithms, it usually 

is diffïcult to distinguish individual operations (additions, multiplications) and hence the 

name Distriiuted Arithmetic. This method is basically a bit-serial operation with the 

difference that multiple vectors can be applied sirnultaneously. This is usudy called n-bit 

at-a-tirne DA; where n is the total number of bits seriaily applied to the DA module. The 

DA module is composed of a number of lookup tables, an accumulator and a number of 

shifier units. For better understanding of this enabling technique refer to [37], [38], [39]. 

1401, and [4 11. 

7.1.3. FFT Butterfïy Data Path hnplementation 
As was seen in the previous sections, multipliers are very costly to Ilnplernent. In 

chapter 6 decimation-in-kequency FFï algorithm was selected for implementation. From 
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Figure 17. the detailed data path for the D E  FFT butterfly engine can be derived. It can be 

seen that there are three additions, three subtractions and four multiplications by the 

twiddle factors, which are to be pre-computed and stored in lookup tables. 

Lookup 

I A- )i - 
Memory Bank L - 

(Real) 
- - ---* - Skew Buffer 

Figure 26. DIF burtefly engine data parh derails 

In Figure 26, pipelining registers for the adders and multipliers are not shown. For 

increasing the computation speed of the engine, the multiplier is heavily pipelined and 

additional pipeline registers are inserted after the adders to balance and preserve the actual 

data dependencies of the data flow. One should be careful of choosing the total number of  
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pipehe levels. This is because, if the number of iterations in the FET is less than the 

number of pipeline levels, the results of the last iteration have not yet been written back to 

the mernories. If this is the case, the algoritbm would not fiinction properly. Tbis is m e  of 

most algorithms, in which the retimuig and the addition of pipeline registers shouid not 

affect the outcome of the dgorithm, 

Figure 27 shows the detailed view of the skew buffers. The inputs to each skew 

buffer are the two real and the two imaginarv parts of the b u t t d y  output. There is a 

counter that counts the number of the data input to this buffer. At each step of the count a 

new set of values are stored in a register p& fïrst RO, then RI, then R2, then R3 and the 

cycle repeats. The counter is delayed by two cycles and which selects a pair fÏom the 

register pairs. This construct rnakes sure that the data has no gaps and the correct order of 

values are generated at the outputs. 

- -- 

Figure 27. Skew buffer deruiled schemaric 
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The input data is assumed to be 8 bits wide for both real and imaginary parts. The 

memory banks are chosen to have 16-bit data busses. So, the input data is written to the 

memories on their least significant 8 bits and the final result is truncated to 16 bits for both 

reai and imaginary parts (most signifïcant bits of the final result is used). It is the 

responsibility of the user to make sure that the final result does not overfiow. 

The other components are sized based on their input values. The adders and 

subtractors accept 16-bits signed data. Adding or subtracthg two 16-bit &ta results in a 

l'/-bit data. The multipliers should multiply the output of adders (17 bits) by the &bit 

twiddle factors. This results in 17x8 signed multipliers that produce 25-bit result. The 

output of the butterfly are uuncated to 16-bits, and written back to memories. This may 

result in some noise ([42], [43], [Ml, [45]) to be added to the computation, which is true 

of ail fixed-point systems. 

As c m  be seen fkom Figure 20, for an n-point FFï, two memory banks with d2 

words each are needed and because two banks are needed for storing the reai part and 

imaginary parts of a complex data, there should be total of four memories of ni2 words 

each. For a 1024-point complex FFT with 16-bit data, four 512*16-bit rnemories are 

needed. The total number of bits used for rnemories is 4*512*16 that is equai to 32768 

bits. 

With this architecture, there could be a confiïct and race to access the memories. 

The output of the skew registers shouid be written to the nrmories and the buttedy 

shouId be fed by new data fiom the memories. One could scheduie the operations to be 

one after another and sequential- But this would increase the number of cycles and reduces 
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the performance. To alleviate this, one can use dual-port memories. Dual-port memories 

are vex-y popular in most FPGAs and are ako available in most A S K  hiraries. If one 

wanted to use discrete rnemory component, this would be very costly and probabIy not a 

good choice and other schemes should be considered. Having single chip is more desirable 

than multiple chips in many applications. 

FPGAs are very abundant in the number of regkters that can ako be used as 

rnemory elements. But if rhey are used as memry, there would not be enough registers 

lefi for implementing state machines and other functional elernents that need registers. In 

modem FPGA architectures, other than abundant registers, there are &O sparse/srnall 

flexible rnemory elements in each CLB" that can be configured as single-, dual-port or 

even Content-Addressable Memory (CAM). There coutd also be flex1'bIe block mernories 

that are larger in size compared to the sparse mernory blocks. In X i h  Vinex FPGAs, 

there are enough dual-ported block memory to implement the 1024-point FFï. 

CLBs could also be configured as read-only memory (ROM) or Iookup tables. 

This is useful for implementing the lookup tables for the real and imaginary parts of the 

twiddle factors. The twiddle factors are computed using a C program for a specific 

number of points and are hard coded into the VHDL description. 

7.2. Design of the Control Logk 
The controller design is responsible for managing the order of operations and to 

provide control signals to different modules. It has to control the multiplexer select lines, 

the different modules' enable signals, and the memories control si@. This module is 

" Configurable Logic Block 
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also responsible for receiving the input data and storing it in the proper order into the 

memories. It is also responsible for sending the result of the computation out of the 

module. The input data is assumed to be a Stream of  2048 bytes. Each byte pair is a set of  

reai and imaginary data samples. 

Clock c 
Clock 

Figure 28. Top-ferel module for 1024-point complex FFT and irs I/O timing 

Figure 28 shows the top-level module for the 1024-point complex FFT with the 

associated input/output timing. The Start signal is asserted and then the input data is 

applied at the DataIn port, real followed by the imaginary part. After the assertion of the 

Start signal the Busy signal wodd go  high indicating that the module is busy processing. 

Busy stays high untii the FFI' computation is done and the data is sent out on the DataOut 

port. The start of the output data Stream is indicated by the Done signal. 

There should be a way to transfer the input data to the mernories through the 

DataIn poa. The controlier is a F d t e  State Machine (FSM) that polls the Start signal. As 
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soon as this signal goes hi@, the state machine starts one of the bit-reversed address 

generators, reads in the data and stores them at the proper memory bank and location that 

was already shown in Figure 20. This is s h o w  as state SO in state diagram of Figure 29 

aiong with its detailed state names. 

Afier aii the data sampks are read into the mernories, the controiier enables the 

data path, starts reading the data samples fiom the memory banks and sends them to the 

butterfly engine. The enabk signa1 on different modules reduces the power consumption of 

the system and is a good design practice to minimize the amount of logic that k king 

switched. The controiler would write the result of the coriiputation back into the mernories 

at the proper locations afier a number of cycles after the application of data that is equal to 

the pipeline delay of the buttedy engine. The controiler will repeat this process 5120 

times, which is calculated as (n/2)*logz(n) for an n-point FFT. This number is the number 

of buttedies in an n-point FFI'. The number of levels in the FFT is log2(n) and the number 

of nodes in each level is m. M e r  the last iteration of the FFï computation the data path 

pipeline should be flushed to memory. This is shown as stzte S 1 in state diagram of Figure 

29 aiong with its detailed state names. 

Finaiiy the FSM has to read the b a l  result out of the rnemories and send them out 

on the DataOut. Once this is complete the process is done and the controller goes into the 

IDLE state where it is ready to receive another set of samples. This is shown as state S2 in 

state diagram of Figure 29 dong with its detailed state names. 

The controller is respoasible for generating ai l  the control and enable signals to all 

the modules in the design, so it has lots of signals traveling around the chip. For a chip to 
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run fat ,  the data path should be able to run at the required speed and also the controiier 

should be able to provide the control signals at the proper tirne. One-hotkold encoding for 

the state machines are preferred because of the abundant registers in the FPGAs. 

Otherwise the decoding logic reduces the speed of the design. This encoding type could 

&O be very useful for optirnizing critical parts of an ASIC design, because of the much 

less complex decode logic for the state machine. 

Figure 2 9, Simplified srare diagram of the conrroller 

7.3. Design Synthesis 
The synthesis is done using the Synplicity's Synplifir tool. The constraints used are 

only clock consuaints. The goal is to nin the design at a fkequency of 50 MHz. Other 

types of constraints couid be input delays (arriva1 times), output delays (max delay), muiti- 

cycle paths, which are cornmon to both FPGAs and ASICs and clock skews, output drive 

and load, which apply to ASICs only. 
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7.3.1. Synthesis results 
The design is successhiiy placed and routed on a Xilinx Virtex V150PQ240-6 

using the Xiluur Alliance v1.5i. It occupies 94% of the device and 66% of the avaiIable 

block RAMs. The timing reports also show that the design is able to run at 50 MHz. Total 

equivalent ASIC gates, reported by Xiluix Alliance, is 165896. 

7.3. Construcfing a Testbench 
For every HDL design, there shouiù be an associateci testbench to ver@ the 

functionality of the design. This testbench could also be used to sirnulate the back- 

annotated design afier the place and route in the FPGAs and d e r  the layout. and routing 

in the ASICS. A testbench could be written for every single module or for the top-level 

module only. As a designer becornes more profident in doing designs in HDL, there may 

not be a need for wery single module, and the top-level simulation is enough. A good 

testbench should cover al l  possible scenarios of the unit under test (LR[T). Usually, the 

test vectors or stimulus of the design is stored in files that are read by the VHDL testbench 

and are applied to the UüT. 
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- 

Figure 30. Basic simularion resrbench 

For verifjing functionality. one can choose between two methods. One is that the 

designer should construct the behavioral model of the design and instantiate it in the 

testbench, dong with the unit under test. Then the stimulus is applied to both the RTL 

design and the behavioral model- And hal iy  the two outputs are compared in the 

testbench itself. The second method, which is easier to implement, is that the outputs of 

the unit under test are stored in files that are compared with the expected results fÏom 

another source (sofiware simuhtions). The second method is chosen here for the sake of 

simplicity and that the purpose and emphasis of this work is on showing the techniques 

presented. 

7.4.1. Results from the simulation and the FFT benchmarks 
From the simulations and the structure of this FFT, it is seen that it takes 2048 

cycles to transfer the 2048 data bytes (reai and imaginary) to the mernories and it also 

takes 2048 cycles to send out the nnal results. The FFI' computation takes 

12+(1024/2)*1og(1024)+12 = 5 144 cycles. With 20 ns cycles time (kom the synthesis 
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result of 50 MHz dock), for tramferring data to/fkom the rnemories it takes 40.96 ps and 

to cornpute the FFï it takes 102.88 ps- If this cornputation is done after another process, 

then one can ignore the transfer of data to/fiom rnemories. 

A cornparison between different implementations (fkom custom ASIC [46], [47] to 

DSP processor iniplementations) of the 1024-point radix-2 complex FFI', can be seen in 

Table 10 and Figure 3 1 (sorne of the results are taken fiom reference 1481). As can be seen 

in chis figure. even the single butterfiy implementation of the FFï k very fast compared 

with most of the general purpose DSPs. The fastest (46 ps) û the Analog Devices Inc. 

ADSP-21160 and the second fastest (61 ps) is the custom FFï ASIC TM66 swi-FFT 

from Texas Memory Systems Inc. It is seen that it is possible to add more butterflies and 

reduce the execution tirne. With two butterfly engine, the execution tirne goes down to 52 

ps and with four butterflies down to 26 p. 

, TI TMS320C60xx 104 
TI TMS32ûC80 

, TI TMS320C67xx 
Analog ADSP2 162 

110 
125 
170 

Motorola DSP56002 1 210 
Lucent DSP1627 
NEC UPD77015 
Analog ADSP2 17 1 
TI TMS32ûC44 
TI TMS320C3 1 

3 IO 
320 
360 
390 
410 . 

Tuble IO. FFT benchmark resulrs (rabulated) 
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k 
Figure 3 1. F R  benchmarks resulrs (chan) 
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Chapter 8 

8. Conclusions and Future Work 
This concludes the work and provides the missing links for Future researchers and 

interested individu&. 

8.1. Conclusions 
A genenc architecture has been proposed that can execute a variety of digital 

signal processing algorïthms. It consisted of a core processing engine and multiple 

memory banks that provide the input data to this core and are also used to store the 

intermediate values and the final results of the computation. A method has k e n  proposed 

to extract the maximum pipeluie levei for a speci6ic algorithm represented in signai flow 

graph f o m  From this signal flow graph, and by e x p l o ~ g  different scan orders of 

operations, one can extract the deiays on each recursive edge of the graph. If all these 

values are greater than one, it is possible to move al l  but one of them inside the data path 

and use them as pipeline registers to speedup the processing engine. After this step, the 

graph is scheduled and the edges are to be assigned to a memory bank while balancing the 

accesses. This problem falls into the category of NP-complete problems for a iarge number 

of edges, so an exhaustive search rnethod has been developed in C. An ILP formulation is 

also presented that assists in this assignment and reduces the arnount of tune necessary to 

arrive at a reasonable assignrnent, An automatic L P  generation program has been written 

in C that works for an arbitrary radix-2 FET algorithm. 
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A prograrn has been written (based on previous work) to ease in the design of a 

hardware-based address generator for arbitrary addresses of size power of two. An 

efficient architecture for a 1024-point radix-2 FFT bas been presented. For this 

architecture, a novel address assip.ment and ordering of cdculations has k e n  proposed 

for a two memory bank system that removes the memory address confïicts and provides 

the core with proper data. 

Finaily, the complete VHDL design of this 1024 point radix-2 bas been done, 

the design was ïmplernented in an FPGA and simuiated in a testbench. A C program has 

been developed for the generation of twiddle factors for this design. 

8.2. Suggested Directions to Continue This Work 
The architecture proposed is generalized enough to be used for dinerent DSP 

dgorithms. This should be verified with other types of DSP algonthms and proved 

efficient with those algorithms. The process of bank assignments ushg the exhaustive 

search takes unreasonable amount of time to run, even the LLP formulation has a long mn 

t h e .  Other procedural and forma1 methods should be devised that would corne to a 

solution with less amount of t h e .  

The heuristics to find the best order of operations and the access order to the 

memones and to assign addresses for each rnemory bank should be formaked and 

expanded to cover different dgorithms. 

There could be a lot of hprovements in the address generator and its 

generalization. One c m  h d  an automatic processes to s ynthesize arbitrary hardware- 

based address generators for any type of access and algorithm. 
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The implementation of the FIT design could be improved by paralIeIizing the 

transfer of data idout of the memones; Le,, while new data is king transferred to the 

memones the old results could be transferred out of the rnemories. This requires some 

modifications to the fkst write and iast read orders; otherwîse there would be confiicts and 

data corruption. The number of buttertly engines and the memory baaks could be 

increased to increase the throughput and decrease the execution t h e  of the FFT. New 

address assignrnent and access order shodd be devised to deviate the conflicts. 
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A. Memory Bank Assignment Exhaustive Search 
The program is cailed BANKS, is written in C and is included on the 

accompanying diskette in the BANKS folder. The source is caIled BANKS.C and the 

executable is BANK3.EX.E. It has been compiled using Microsofi Visual Ci+ 5.0. AU the 

project files necessary N e s  is aiso included. 

A.1. Exhaustive Search C Source Program for 16-point radix-4 FFT 

cnar 'Copyright = 'Merno-T Bank Assigament Exhaustive Search for 16-point radix-4 FFT\nœ 
'Copyright t c 1 1999 Amal Knailtash (akhailtash@spacebridge. corn) \2\nœ : 

* C e f i n e  xO-OF-EM;ES 3 2  
t à e f i c e  NO-OF-NODES 8 

struct edge ( 
inr src-node; 
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int 6st-node: 
in= ban%: 

1 eàges [NO-OF-EDGES] ; 

s=,mxr node ( 
iûr inpurs[4J: 
inr outputs [ 4  1 : 

1 nodeç [NO-OFJJODES 1 : 

vo iC read-edges-&?d-noàes ( voià 
( 
int 5. j; 

edges [ i 1. src-node = src Ci 1: 
edgesfil -dsc-node = dstlil : 

I 
f o r (  i=O; i<NO-OF-NODES; i- 1 
{ 

for (  j=O; j 4 ;  jt- ) 
c 
nodes[il.inputs[jl = noàe-i-ol~lf0iCjl; 
nodes[il .outpucs[j] = node-i-olij [l] [j]; 

1 
\ 

I 

s t - T C t  symSol 
int Cost: 
i x  count: 
int use&: 

1 syAmls[L6j: 

voie ini t-symbols-costs ( void i 
( 
ic= i; 

for (i=O; ic16: i+-) 
r 
syubols [il .cos= = symbol,costs [ i l  : 
symbols[i] .count = 0: 
symbols[il .used = FALSE: 

1 
1 

symbol-O = edges [nodes [ i 1 . outputs [O 1 1 . bank + 

edges[nodes[il -0utputsCL11 -bank * 2 + 

edges[nodes[il .autputst2! 1 -bank * 4 + 
edges[nodes[il -ou+putsl311 .bank * 8; 
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return cost: 
I 

void a c i c - i f - E S C ~ r e s s e d f  ucid 1 

if i W n i t O  1 
if ( getchO==27 ) 

exit ( O 1  : 
J 

if ( kbhit0 1 

if ( (cn=getcnO)==' ' 1 
return TRUE; 

else if ( ch==27 1 
exi~(l) : 

else 
return FALSE: 

1 e lse 
re:urr, FALSE: 

! 

voie report-rime( char 'msg 1 
( 

St%C'L Lnt -=In; 
the-t currenc-time; 
sratic char tirne-now[801: 

tirne ( hcuzzenc-time ; 
tm = localcime t hcurrent-the 1 ; 
sprint£ [ time-now, '%02d:%02d:$02d', un->tm,hoz~~, tm->tm-min. tm->tm-sec 1 : 
printf ( '%s%s\n', m g .  timesow ) : 

1 

void gec-cime ( c-ilar 'now 1 
( 
/ /  S t N C t t E l  "a; 

cime-c current -c ime ; 

tirne( &current,time 1; 
/ /  tm = localtirne( hctrrrenc-cime 1; 
/ /  sprintf( now, '%02d:%02d:$OZd', cm->tm-hour, tm->tm-min. tm-xm-sec 1 :  
sprintfl now. asctime(~ocaltime~&~~trent~time1 1 ) ;  

1 

void main ( 1 
{ 
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-signed long i. start; 
int crr-lent-cos=. las=-cos: = 99999 : 
znt wort3 ; 
FILE 'fp; 
int show = TRUE; 
char time,now[80] ; 

prinrf( Copyright 1 ;  
prinzf i 'Press =SC CO exic program. \n' 

S P X F  co stop/testart àisplaying ine -Tent cost.-.\n\n' 1 :  

do c 
prizcf( '=ter startizg cos: I c  hex (O if expioring d l )  r ' 1 ;  

1 while î scmf ( '%xœ, &start ) ! = i 1 : 

! / report,time( 'Staxted at ' 1 : 
get,tzrie( cime-now 1 ;  
printf ( '\nStarted ac %s\nD . tke-now 1 : 
fprintf( fp, 'Starced ac %s\n'. cime-now 1 ;  

{ 
if ( show 
else 

1 

) show = FUSE: 
show = T R E :  

= calcrrla=s-cos=( &words 1: 
-= words: 

( 
printf( '\,-Last = $6d\tCurrent = $6&\tWor& = $d\tSymbol = 0081X\n', 

lasc-cost. current-cost, words, i 1 : 
fprintf( fp, 'Last $6d\:Chrren: = %od\tWords = %d\t%OBlX\n'. 
last-cost, curzent-cost. words, i 1 :  

last-cost = current-cost: 
1 

/ wait-f or-SPACE ( 1 ; ' / 
1 

/ /  report-tirnef 'Finished at ' 1 ;  
get,time( time-now ) :  

printf ( 'Finished at %s\n' , cime-naw 1 : 
fprintf( fp, 'Finished at %s\nw. tirne-now 1: 
fclose ( fp 1 : 

wair,fo~SPACE( 'Press SPACE to exit.' 1 ;  

A.2. SampIe Output of the Exhaustive Searcb 
This is a shorten6 version of the actual file that is included on the accompanied disk.  
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M a o - c y  3ark ~ s s i g n m e n t  Exhacstive Search for 16-point -tadix-4 FFT 
Copyright tc) 1999 Amal &ilrash (akhailtash@spacebridge.com) 

Started a: Tue M ~ Y  13 09:05:43 1997 
Las: = 
L a s =  = 
L a s c  = 
L a s =  = 
Las: = 
L a s t  = 
L a s =  = 
L a s =  = 
L a s =  = 
L a s t  = 
L a s t  = 
L a s t  = 
L a s t  = 
L a s t  = 
L a s c  = 
Las: = 
L a s t  = 
L a s =  = 
. . - -  
L a s t  = 
L a s t  = 
Las: = 
. * .  . 
Las: = 
L a s t  = 
L a s t  = 
L a s =  = 
Las: = 
Las: = 
L a s t  = 
L a s t  = 
L a s t  = 
L a s t  = 
L a s =  = 
L a s t  = 
- . . -  
L d ~ t  = 
a - . .  

L a s t  = 
L a s t  = 
L a s t  = 
L a s t  = 
L a s t  = 
L a S c  = 
Las: = 
L a s t  = 
L a s t  = 
Las= = 
Las: = 
L a s c  = 
Las: = 
L a s t  = 
LdSC = 
L a s c  = 
L a s t  = 
L a s t  = 
L a s c  = 
L a s c  = 
L a s c  = 
L a s c  = 
L a s =  = 
L a s c  = 
L a s c  = 
Las: = 
L a s c  = 
L a s t  = 
Las: = 

C u r r e n t  = 
Current = 
Current = 
current = 
CUrrett'L = 
-en= = 
Currenc = 
Current = 
k-zen: = 
Current = 
current = 
C u r r e n c  = 
Cu,rrenc = 
Cufrenf = 
Currenc = 
C u r r e n t  = 
Cirrrenc = 
Curre-nt = 

C u r r e n :  = 
C u r r e n c  = 
Current  = 

Cufrent = 
Curreric = 
C u r r e z x  = 
C u r r e n c  = 
c u r r e r r c  = 
Chrrent = 
Current = 
Currenc = 
Current = 
Current = 
C u r - r e m  = 
C u , r t e n t  = 

Curfent = 
Curzezt = 
C u r r e n t  = 
C u z r e z i t  = 
C u r r e n r  = 
Current = 
Cuzrre rz t  = 
Curfent = 
CLlrreLlt  = 
C u z r e n t  = 
C u r r e = t  = 
C u r r e n t  = 
C u r r e n t  = 
Curre.nt = 
Cu=rrenc = 
curent = 
C u z r e n t  = 
Cur=enc = 
Current = 
C U f r M t  = 
C U m M t  = 
Current = 
Current = 
C u x r e n t  = 
C u r r e n t  = 
Current = 
Cu-~enc = 
C u r r e n t  = 
Current = 

W o r d s  = I 
words = 2 
W o r d s  = 3 
W o r &  = 3 
W o r d s  = 3 
W o r d s  = 3 
W o r à ç  = 3 
words = 3 
W o r &  = 3 
words = 3 
W o r à s  = 3 
W o r à s  = 3 
W o r d s  = 3 
W o r à s  = 3 
words = 3 
W o r d s  = 3 
W o r d s  = 3 
waros = 2 

W o r d s  = 4 
wo-tds = 4 
worcis = 5 

W o r d s  = 4 
W o r d s  = 4 
W o r à s  = 4 
W o r d s  = 4 
W o r d s  = 4 
W o r k  = 4 
W o r à s  = S 
W o r d s  = S 
woràs = S 
W o r -  = 4 
woràs = 4 
W o r &  = 3 

W o r d s  = 3 

words = 2 
wozds = 2 
W o r d s  = 2 
W o r c i s  = 2 
W o r d s  = 2 
W o r d s  = 2 
W o r d s  = 2 
W o r &  = 2 
W o r d s  = 2 
W o r d s  = 2 
W o r d s  = 2 
W o r d ç  = 2 
W o r â s  = 2 
W o r d s  = 2 
W o r d ç  = 2 
W o r d s  = 2 
W o r d s  = 2 
W o r d s  = 2 
W o r d s  = 2 
W o r d s  = 2 
W o r d s  = 2 
W o r d s  = 2 
W o r d s  = 2 
W o r d s  = 2 
W o r d s  = 2 
W o r d s  = 2 
W o r d s  = 2 
words = 2 
W o r d s  = 2 

Symbol = 00000000 
Synbol = 00000C0l 
Symbol = 00000003 
Çymbol = 00000005 
Symbol = 00000006 
Symbol = 00000007 
Symbol = 00000009 
Symbol = OOOOOOOA 
Symbol = OOOOOOOB 
S m ! .  = OOOOOOOC 
çymbol = OOOOOOOD 
Çymbol = 0000000E 
Symbol = OOOOOOOF 
Symbol = 00000011 
S p b o l  = 00000012 
Çymbol = 00000053 
Symbol = 00000032 
S m i  = 00000033 

symbol 
-1 
Symbol 
Symbol 
Symbol 
s-1 
s-1 
Çymbol 
Çymbol 
Çymbol 
symbar 
Çymbol 

Finished a t  Thu May 15 15 : 0 3  : 18 1997 
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B. Program to Generafe the ILP Source File for Arbitrary FFT 
The program is compiled using the Microsofi Visual C++ v5.O. 

B.1. Program (GILP-FFT-C) for Generating Bank Assignment ILP, arbitrary FFT 

char 'Copyright = 'ILP Generator for radix-2 FPT\n0 
'Copyright I C )  1999 Amaï EChaiLtash (akhailtash8çpacebridge.~omI\n\n': 

char wUsageYsg = 'Usage: GILP-FFT cnumber-of-pointsw cra- clevels>\n' 
rriribez,ofgoints : is the number of points in che FF?-\n' 
--a& : is the .W raaix.\n' 
levels : is the number of ieveis in rhe grapri-\no: 

in= N. / *  Number of poizts '/ 
R. / * R a d i x ' /  
L. / *  Levers * /  
3. ," Nunber cf merno-y 'knks " /  
1. / '  N u n b e r  of iteretfons '/ 
5. / *  N h e r  of edges * /  
S. / *  NuInber of symbols '/ 
P: / *  * /  

void prict-header( void 

void prinr-f f t-data ( void ) 

( 
inc i. r. e: 

/ /  i n t  "wi; 

p r i n t f  ( "SETS\nW 
W ( I .  El Writer's Iteration number\n /\no 1 :  

for( i=O; ici; i+- 
C 
prin=f( ' %2d. ( O .  5 ) :  
for ( r = O ;  r c R ;  r++ 1 
C 
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e = i * R - r :  
printf( ' I i4dBs'.  e. r < R - 1  ? ',' : ' 1 '  1 ;  

/ / w i [ i ]  [rl = e: 
1 
printf ( '\no 1 : 

1 
princf(' / \ n g 1 :  

# i fde f DEBUG 
/ /  f o r (  i = G ;  i<I: i- ) 

/ /  ( 
/ /  f o r (  r=O; r < R :  r-+ 
/; ( 
/ ; p r i z t f i  ' w 1 ( % 2 à .  % 2 d l  = %2d '. i, r, wiiil [ r l  1 :  
/ /  1 
/ /  printf  ( '\ri' 1 ; 
/ /  ; 
U endi f 
printf ( ' RI (J, E) ~eader's Iceracion number\n /\n' 1 : 
f o r (  F=O; i<I; i-- ) 

{ 
prin:f( ' %2C- ( * .  i ) :  

f o r {  r=û; r c X :  Z- ) 

r 
if ( i c ( N / R )  1 
e = i  - R + r - E / 2 ;  

eise 
e = ( 1 1 2 1  * z + i - ( 1 / 2 ) ;  

pzizzfl '%4d%sœ, e .  r c R - 1  3 '; : ' 1 '  1 :  

void print-table( void 1 
( 
int r, S. i. b; 
char buf[l61. symCl6l. str[21 = O?'; 



www.manaraa.com

printf( ' S C  '. buf[iI 1 :  
s;r[Of = buf [il; 
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for ( b=B-1: b>O : b-- ) 
printf( ' BAMCBAMCIS-$d[S. 6) = 1 S (BITS (S. BI EQ %dl ;\no. b, b 1 r 

free( banks 1 ; 
£ ree ( sym-cosc 1 : 
for( s=O; s<S; s-- 1 
free( sym-tabisl 1; 

f ree ( sym-tab 1 r 
1 

'VARlkSLES\n' 
~,x(I, S )  iirice at iteration 1 is assiq-,ed symWl S\=' 

' R,X(I. Ç) R e a d  at itera~ion 1 is a s s i ~ e d .  Symbor S\z' - w-SIM(S) 'local numbez of each symbol for wzites\nœ - x,Sm(S) Total numSez of each sjmbol for reads\no 
W - S m ç  Total write çymbols\n' 
R-SWS Total readçymbols\n' 

O W-COST Cost of write symbols\n' 
R-COST Cast of read symbals\n' 
COST Total cost\n" - ;\n\n0 

'BINARY VARIABLES W-X. R,Y. W - W .  R-ÇYM ; \no 
'INTEGER VARIABLES W-SYMS. R-SYMS ;\n\nw 
'EDGE,EXTS(E. 1. J. BI. BJ) =YESSYIJI(I, El S R I ( J .  F1 $ '  
'9W(BI. E) $ BR(BJ, El :\n\ng 
.**. ****t*ttt~*******t***************t***********************\~~ 

' *  Canstraints & objective Eunction (Equations)\n' 
I * * . * . . * * * * * * * * . * * * * * * * * * * * t t * * * * t * * * * . * * * * * * * * * *~ *~* * * * * * * * *  \cm 

'EQUATIONS\n' - CONSl(1) Allow only one write symbol at iteration I\n' 
CONS2 (1) Aïlow only one read m l  a= ireration I\no 
CONS3a(S) Calalate total number of each symbol for writes\nœ 

' CONS3b(S) Calculate total n-r of each s y m b o l  for writes\nœ 
' CONS4a(S) Calculate total number of each symbol for reaàs\c' 
' CONSQb(S) Calculate total number of each symbol for reads\r-' 
' CONS5 Cal-late tocal 3-r of mite symbols\n' 

CONS6 Calculate tocal number of read çymbols\n' 
' CONS? Calculace cosr of m i t e  symbols\n' 

CONS8 ~alcu'ate cosc of read symSols\r,- 1 ;  

for ( b=l; bcB; b- ) 
princf( ' CONS%d%s (E. 1. J. BI. SJ1 Force the bit to be '%da c n  " 

'corresponiiing read of a wrice\sœ , b 8 .  (b==i?' ' : " ) , b : 

Our objective (cost) function\nœ 

print£( 'CONS%~(E. 1, J. BI, BJ) 5 ( EDGE-EXTS(E, 1. J. BI. 3J) --\no. b-8 1: 
princfi ' SUM(S, W-X(1. S1wBANKBANKIS-%d(S. BI)) =E= SUM(S. R,X(J, SI" 

'BANK-Is%d (S. BJ) 1 ;\n\no, b, b 1 ; 
1 
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- *\a- 
- w ~ * * * * * * ~ * * * * * * . l . * * * * * * . ~ * t * * t * * t * * ~ ~ * * t ~ * * * f * * * ~ t * t I ~ * * 1 * * \ ~ C ~  

'MODE.. Banks / ALL / ; \a' 
'OPTIONS LIMROW=10000. LIkCOL=100, RESLIM=90000000, ITERtIM=1000C000 : \no 
'SOLVE Banks USIKG KIP KI'PJIEiIZïNG COST ;\no 1 ; 

1 

void usage( void 
i 
fprietf( stderr. UsageMsg 1 ;  
@xi=( l 1: 

1 

int main( inc argc, char 'argvl] ) 

( 
if I argc==l 1 ( 

fprintf( stderr, 'Number of poinrs --> ' 1: 
sc=f ( '%dg, &N 1 r  
f p r i c r f (  stderr. 'FFT R a b  --> - 1 ;  
scaf ( '%do, &R 1 : 
fprizcf ( stderr. ' N h r  of ievels --) ' f r 
scar.f ( ' S d -  , &L 1 ; 
fpri~tf ( s:de-T. 'Kernory Banks --> - ) ; 
scanf ( '%d', &B 1 ; 

1 else if targc != 5 )  C 
usage ( 1 : 

1 e lse  ( 
N = atoi (argvCll) ; 
R = atoi (argvi21 1 ; 
L = acoi(arqvt3! 1 ; 
9 = atoi (argv[41) : 

1 

. - 
l r  (N != (int)pow(R. LI { 

fprincfc stderr, 'Invalid ntmbers, impossible!\n' 1 ;  
exit(l1; 

? 

B.2. ILP Source (FE'T-16-2GMS) for 16-point radUr-2 FFT, Two Memory Banks 
STITLE Assignment of m e m o r y  h?ks to variables 
SOFFUPPER 

- Copyright [ c )  1999 Amal Khailtash 
* (akhail rash8spacebridge. corn) 
I I * * * w . . * * I w * * * * * * * C * * ~ * * * * * * * 1 * * * * * * t * * ~ * * * * * * * * * * * * * * * * * * *  

* Indices  (sets) 
..***. * * * * ~ * ~ ~ ~ ~ ~ * * * * * ~ * * * * * * * ~ * ~ * * ~ o * * * * * * * * * * * * * * * * v * * * * * *  

SETS 
I Icerration number / O * 7 / 
s Syrnbol / 0 * 1 5 /  
3 Bit index / 0 ' 3 /  
E Edge index / 0 * 3 1 /  

a 1 A . S  (1. JI ; 
ALIAS (B, BI. BJ) ; 
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TAELL: 
BITS (S. 91 binary equivalents of symbol S 

SYM-COST (SI Cosc of each symbol 
/ 

0=2. 1=1, 2=1. 3=0. 
8=1, 9=0, 10=0, 11=1. 

/ 
mr~i-~s-l(s. 8) 1s one for bank 1 

BANK,IS,~(S, BI  = 1 S (BITStS. BI 
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* Decision variables (vaziàbles) 
. * * C l . * * t * * w * * * * * * * * * * * * * * l * * l * * * * * * * * * * " * * * * ~ ' * * * * * * * * * * * *  

VARIABLES 
w-x(I. S)  Write at ireration I is assign& symbol S 
2-x ( I , S) Read at iteracion f is assigze çymbol S 
W-Smrs) Total number of each symbol for writes 
R-SYM(S) Total number of each for reads 
w - ~ m ç  Total write symbols 
R - S m  To=al read çym'ools 
'rr_COST Cosc of write symbals 
R-COSY C O S ~ O ~  readsymbols 
COSY Total cos= 

EQUXIONS 
c0r:s: (1 1 
CONS2 ( 1 ) 
COXS3a (S 
COh'S3b(S) 
COXS4a(S) 
COXS4b [ S 1 
coxs 5 
CONS 6 
CONS7 
CONS8 
CONS9 (E. 
Oa32cT 

CONSl(1) .. 
CONS2(1) .. 
CONS3a(S) . . 
CONS3b(S) . . 
COXS4a (SI . . 
CONS4b(S) . . 
CONS 5 . . 
CONS6 . . 
CONS7 - .  
coma - .  

;rllow only one =ire -1 at iteration 1 
Allow o ~ l y  one reaà symiJol at iceration I 
Calculate total number of each symbol for writes 
Calculate total nvxnber of each symbol for wrices 
Calculate total c h e r  of each symbol f o r  reads 
Calculate total cirmber of each symbol for readç 
Calculate cotal number of write symbol.5 
Calculate total number of read symbols 
Calculate cost of write -1s 
Calculate cost of read çymbols 
1. J, 91, BJ) Force the bxt to be '1' on corresporiding read of a mite 
Our objective (cost) funccion 
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C. Program to Generafe F R  Twiddle Factors 
The program is compiled usine the Microsoft Visual Ct+ vS.0. 

C.1. C Source Program TWIDDLE.C 

char 'Copyright = 'Twiddle Factor m D L  Generacor for radur-2 FFT\ag 
'Copyright (c) 1999 Amal Khailtash (akhailcash@spac~ridgeecami\n\n~; 

char 'UsageMsq = 'Usage: TîCDCLE a>\c'  
n: of E'FT points [power of 2)\n-; 

inr maira( icc argc, char 'argvi] ) 

f 
int k. n. m; 
àouble w-real , w-imag r 
int w-real-scaled. w-imag-scaled; 
inc *me *wi;  

fprin=f( stàerr. Copyright 1 :  

if ( argc!=2 1 
usage ( 1 : 

Wifdef DEBUG 
printf ( '%02d: w-r: %9.6f (%4& (%OZXI \tw-i: $9 .6£  (%4d)  (%02Xl \n' . k. 

w-real. w-real-scaled. wrlkI, 
w-imag. w-hg-scaled. wi [kl 1 ; 

Y endi f 
1 

printf( W ----------------------------------------------------------------------------- 
\no 1 ;  
pr+cfi " -- C o n s t m t  middle Facrars\nw 1 ;  
printf( ' ----------------------------------------------------------------------------- 

\ = O  1 ;  
printf ( ' t y p e  LookupTable is array(0 to %dl of std-logic-vector (7 downco 0 )  : hg. m-1 

) : 
princfl ' constant W R  : LookupTable := (\no 1 ;  
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C.2. Sample Output of the Program for a 256-point FFT 
Twiddle F a c t o r  W L  C e n e r a t o r  for radix-2 FFT 
Copyright (cl 1999 Amal I c h a i l t a s h  (a~ailtaçh@spacebridgeecom1 

-- C o n s t a z z t  Twiddle ?ac=ors 

cype L o o k t i p T a S i e  i s  array ( 0  CO 1 2 7  1 of scd-logic-vector ( 7 downto O : 
conscmc WR : LookupTable  := t 

X'7F'. X'7E'. X'7E'. X'7E' , X'7E'. X'7E'. X97D', X'7D' . 
X'7C'. X073', X'79'. X'7A'. X'79". X'78'. X'77'. X'76'. 
~ " 7 5 ' .  X-74" .  X'72-, ~ ' 7 1 ' .  ~ ' 7 0 ' .  X'6E'. X'6C0, X'6B'. 
Xg69',  X - 6 7 - .  X'66'. X'64'. X'62'. X'6O9, X'SE', X'SB'. 
X'59'. X-57 ' .  X'55'. Xg52', X'SO', X'4E'. X'4Bg, X'49'. 
X'46".  X'43'. X-41'. X'3E'. X03E'. X-39'. X'36'. X-33' .  
X'30'. Xg2D', X'2A0, Xg27'. X'24'. X'21'. X' lE' ,  X'lB', 
X m 1 8 ^ ,  X'15'. X'IS'. X'OF', X'OC'. X'09'. X'06'. X'03". 
X'OO', X'FD", X'FA', X'F7'. X'F4'. X'F1'. X'EE', X'%'. 
X'E8'. X"E5'. X ' S ' ,  X'DF', X'DC'. X9D9', X'D6'. XgD3', 
X'DO', X'CD', X'CA', XœC7', X'CS', X'C2'. X'BF'. X'3D'. 
X'BA'. X'B7'. X035', X'B2'. X'BO', X'AE', X'AB', X'A9'. 
X'A7'. X'AS", X'A2'. X'AO'. Xm9E',  X'9C'. X'9A'. X'99'. 
x œ v - ,  X-95 ' .  x - 9 4 0 ,  X - 9 2 - ,  X - o ~ - .  x-ea-, x-er-. x-ec-, 
Xm8B',  X '8Aœ, X'89'. X'88'. X'87'. X'86'. X-85'. X'85'. 
X"84' .  X'83'. X W a 3 ' ,  X082', X'82'. X'82'. X082'.  X-82' 

I : 

c o n s t a r r c  WI : LookupTable  := ( 
X'OO'. X'FD', X'FA', X'F7' .  X'FQ', 
X'E8' . X'ES' . X0E2', X'DF', X'DC'. 
X'DO', X'CD', X'CA', X'C7'. %'Cs', 
X'BA' , X'B7'. X'BS', X'B2'. X'BO'. 
X'A7'. X'AS'. X'A2'. X'AO', X'9E'. 
xg97 ' .  X-95'. X'94'. Xg92', X'90g, 
X'8B0. Xg8A', X-89'. X'88'. %-87'. 
X'84'. Xg83', Xœ83', X'82'. X'82'. 
X œ 8 1 ' ,  X'82'. Xœ82', X'82'. X'82'. 
Xm84',  X'85'. X'85". Xg86".  X087',  
X'8B'. X08C', X08E', X'8F'. X'90'. 
X'97'. X'99'. X'9AW, Xg9C'. X'9Eo, 
X0A7', X'Ag', X'AB' , X'AE' . %'Bo'. 
X'BA', X'BD', X'BF', X'CS', X'CS'. 
X'DO', X'D3'. XœD6", X'D9'. X ' X ' ,  
X'E8'. X'EB', X'EE', X'Fl', X'F4'. 

1 : 

X'F1' , 
X'D9'. 
X'C2'. 
X'AE' , 
X'9C'. 
X'BF' , 
X-86'. 
X982', 
X-82'. 
X'88'. 
X'92', 
X'AO ' . 
X'BS ' . 
X'C7 ' , 
X'DF' , 
X'F7'. 

X'EE' , X'EB' , 
X'D6'. X'D3 " , 
X'BF' , X'BD' . 
X'AB' , XmA9', 
X'9A'. X'99', 
X'8E'. X'8C'. 
X -85 - ,  X085', 
XgB2', X'82' , 
X'83'. X'83'. 
X'89". X'8A'. 
X'94'. X'95'. 
XœA2', X'AS' . 
X'B5' , X'B7" . 
X'CA' . X'CD' . 
X"E2', X'ES' . 
X'FA'. X'FD' 
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D. C Source File Used to ûesign a Hardware Addreas Generator 
The program is compiled using the Mimsoft Visual C++ v5.0. 

D.1. C Source File ADDGENC 
#include ccocio.h> 
ainclude <ma:h.h> 
sinclude <scdarg.n> 
tinclude <stdio.h> 
linclude Cstdlib .b 
#incluàe <string.h> 

Ydefine TEST-I 
//#Cefixe TEST-2 
!/*defice TEST-3 
!r#Cefi i=e TEST-4 

nlfdef TEST-I 
# aefine SIZf (256'256) 
t endi f 
#ifdef TEST-2 
# define SIZE (256*256) 
n enài f 
t i f de f TEST-3 
t define SIZE (12) 
#endi f 

#define FALSE (O==L) 
+def ine TRUE (1==1) 

typedef unsigned char BYTE: 

ildefine sA!&Es 8 
idef ine POWZR ( (double) LoglO ( (double) SAKPLES) /logla(le) 2 -0) 1 

# i Ede f TEST-1 
void ger.-adüressesl( void 1 
{ 
int x. y. i .  j. X. Y; 

block height = 16 rows 

block width = 16 columns 

do 4 times 

every 2r-d l i n e  

every 2nd pixel 

printf( ~~~~~~~~~~~~~~~~~~~~~~~~~, Y, X ,  i, y. x 1 ;  
ad&ess[j] = x + y - X + Y; 
printf( '\tj=%d. add=%d\nm, j, address[jl 1 :  

j++; 
getch ( 1 : 
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# i fàe f TEST-2 
vo ia  gez-addresses21 voici 1 
( 

53:  x ,  y ,  j. X. Y; 
in= ra-qd[l = < 0, 0, 1, O, 1, I. 0. O .  0. 0. 1. 0. I* 1. 0. 1 1: 

void get4aàdress-bits( int bic  1 
( 
ir,: F ;  

int bits-equal( int 'bit, i n t  lasc 1 
( 
inr i: 
int equal; 

'bit = add-bicl0l; 
equal = TRE; 
f o r (  i=l; ie last;  i- 1 
( 
if ( aaà-~it[i-11 !=add-bitiil 1 ( 

'bit = -1: 
equal = FALSE; 
break; 

1 
1 
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int halves-equai( int firsr, int last 1 
r 
ict i ;  
int equal: 

equal = TRUZ; 
f o r (  i=first; iclast; i-- 1 
{ 

4 P -- ( add,bIt[i]!=aàd,bitlrasc-i! 1 C 
equal = FALSE: 
break: 

1 

return equal: 
i 

return Inverse: 
1 

void semi-ranàom,çequence( aYTE 'list. int size. char 'mappicg 
{ 
int i, j. c; 
char buf fer(l02C] : 
; "- 
A-.L f i r s c l ;  
in: firs=2: 

/ /  printf ( 'Seni-==dom Sequence. . . \no 1 ; 

mapping/Ol = ' \ O e ;  
firscl = TRL'Z: 
C = C ;  
f o r (  ==O: i c s i z e :  i-- 1 { 
if ( lis=[i]==l ) { 

C I -  ; 
/ / printf ( 'list[%d] =%d\n-. 2 ,  list[il 1 ; 

if ( !firstl ) strcac( mapping, ' t\c " 1 ;  
firsc2 = TRUE; 
for ( j = O ;  j<(int) (log10 ( s ize l  /log10 (2) 1 ; j++ 1 C 

if ( !first2 ) strcatc mapping. '.' 1 ; 
sprincf( buffer. 'CI%dl', j 1:  
strcat ( mapping , buffer 1 : 
if ( (i & (0x1 cc j))==O 1 strcat( mapping, '^' 1 : 
if ( first2 ) first2 = FALSE: 

1 
if ( firstl ) firstl = FALSE: 

1 

void -th-address( BYTZ 'list, i n t  size. char 'mapping 1 
{ 
int bic, last. m; 

/ /  int bit. equal, iast; 
char new-pping [10'10241: 
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/ / pr in t f  ( -Synch Address.. - \n' 1 ; 
f a s t  = size:  
do ( 

i f  ( bits--al( & b i t ,  last 1 ( 
sprincf ( -lapping. '%à'. bic i ; 
return: 

1 
last /=  2: 

] wniie( n a l v e s - m a l (  0. last 1 1; 
/ /  1 wnile( halves,equal( 0. l a s t  ) && las t>O E: 

i f  ( halves-inverse( 0. l a s r  ) C 
m = ( i n r )  ( l o g l 0 ( l a s t )  / logIO(2) 1 : 
i f  ( halves-equal( 0. last/2 i 1 ( 

sp r i c t f  ( mapping. '%sC[$dl', (lisc[Ol==O) ?": 'sot  ', rn 1 : 
1 e l s e  C 
syn-A-address ( l i s t ,  l a s t  . new-mpping 1 : 
s p r i n = f (  mapping. 'C[%dl xor (%s)'. m. new-mpping ) ;  

i 
j e l s e  ( 
seni-r=dcrn,sequence ( lis=, Las:-2, ziew-papp3g 1 : 

/ /  s p r i n t f (  adpping, ' ? ? L w  1 : 
s p r r n t f (  ciapping, new-mpping ) :  

i 
1 

voie t race  ( char 'S. . . . 1 

va-List args; 

va-star t (  args. s 1 :  
vprintf  ( s, a rgs  1 :  
va--d( args 1 : 

R endi  f 
1 

- B i c  reverse the  number - Cnange lllOOOOOb CO 00000111b oz vice-versa 
~****.**ft*t**.*'~**~..t~~.t...~***t.*****~~.-*-.~-*-'~*~**********..-*.******/ 

i n t  pe,?nute( in= index 1 

inc nl .  rescl:. loop: 

i f  (inaex c n l )  
concinue: 

r e su l t  += ( i n r )  pow ( (double) 2.0, (double) loop 1 ; 
index -= nl; 

1 

re turn resu l  c : 
1 

voie Eft-&if0 
( 

i n c  1, i. j.  k; 
i n t  m. n. o. P: 
inc x:  

/ /  double w: 
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:.I ooutile zl. w l .  22. w2: 

X = O: 
m = SAMPLES / 2; 
c = 1: 

c 
ad&essl  lx1 
adciress2 [ x i  
aeess3 [x 1 
address? lx: 
trace( -%a: 

i else  { 
addzessl lx1 
adckess2 [xl 
address3 fxl 
addzess4 [xj 
-,race[ '%d: 

1 
XI-;  

1 
trace ( -\c' 1 ; 
O -= (rn - 2 ) ;  
p -= (m ' 2 ) :  

1 
P / =  2: 
n -= 2: 

# i f de f TEST-1 
gea-ad&esseslO; 

, pr=s=,acàzesses i 1 ; 
f o r (  i=O: ic16; i-7 1 
{ 
ge tgd&xess-bics ( F 1 ; 
-th-address ( add-bit, SIZE.  trançform 1 ; 
printf( ' '%se \c==> adbit %d\nw, cransform. i 1 ;  

1 
pr in t f  i O \n' : 

# endi f 

t if de f TEST-2 
gen-addresses2 ( : 
f o r (  i=O; ici6; i+t ) 

{ 
gecaddress-bi ts ( i 1 ; 
syn ch-address i add-bi t , SIZE, trans form 1 : 
p r i n r f (  ' ' $5 ' \c==> adbic %d\n" . rransfom. i 1 ; 

1 

# i £de f TEST-3 
adciress[ 01 = 0 ;  address [ 11 = 2 ;  address [ 2 1 = 1 :  address[ 31 = 3: 
addressi 41 = 0: address [ 51 = 2 :  adeess [ 61 = 4: addzess [ 71 = 6: 
ad*esS [ 81 = 0: addzess l 91 = 2; address 110 1 = 4: addressllll = 6; 
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D.2. Sample #1 

D.2. Sample #2 

==> aübit 3 
==> aâbit 4 
==> adbit 5 
==> adbit 6 
==> adbit 7 
==z adbit 8 
==w adbit 9 
==> adbit 10 
==> adbit 11 
==> adbit 12 
==> adbit 13 
==, adbit 1 4  



www.manaraa.com

D.2. Sample #3 

D.2. Sample #4 
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entity butterfly is 

o-r . ;* . . 
. *-- 

pi. : :n 

x-r : out 
X-Z : OUK 
Y-= : OU= 
Y-: : OU= 

I r 

std,logic,vector(lS downto O); 
std-logic-vector(l5 dowrrto O) : 
std-logic-vecror(l5 downto 01; 
std,logic~veccor (15 downto O 1 

enc er.ti:y bctterfly; 

component regqipe 
generic ( 

DZPîH : posicive; 
W I D S H  : posicive 

1 : 
porc ( 

reset-2 : ir, sr&-logic: 
clock : in std-logic; 
ecable : in std-logic; 
1 : in std-logic-vector(mDTH-1 downto 01; 
c : CL= s ~ à ~ i o g i c ~ v e c ~ o r  (KZDTE-I EOK=O O ) 

J : 
enà cornpo-rle.n,t : 

compor,enc mulc 
generic ( 

A-WIDTH : positive: 
B-WIDTH : positive 

I : 
port ( 

reset-n : in std-logic; 
clock : in std-logic; 
enable : in std-logic: 
a : in std-logic-vector(A,WIDTH-1 downco O) ; 
b : in std-logic-vector(5-WIDTII-1 downto O ) ; 
F : out std-logic-vector((~-~~TH-B,~DTCf-~l doWnt0 0) 

1 ; 
end component: 

signal arglus-br : stà-logic-vector(l6 downto O); 
signal aiqlus-bi : stà~logic,vector(l6 domtu 0 ) ;  
signal ar-rninus-br : std,logic,vector(l6 downto O); 
signal ai-minus-bi : std,logic,vector(l6 downto O ) ;  
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signal po 
s imal  p l  
signal p2 
signal p3 

: std-logic,veccor(24 dcworo O ) ;  
: scd,logic~vector(24 d m - C O  0) : 
: s~4,logic~veccor ( 2 4  downtc 0 1 : 
: std,logic,vector (24 downto 0 )  ; 

signal p0-minus21 : std,~ogic,vector(25 downca 0 ) :  
signal p2slus-p3 : std,logic,vector ( 2 5  downto O 1 ; 

sigzal w-=,del : std-logic-vecccr( 7 downco 0); 
sival w-i-del : st~,iogic~vec~or( 7 downco 01: 

-- The following shoirld De calculaceci: 

port m a p l  
reseï-n => zesec-c. 
clock => clock. 

i-mulc2 : mult 
generic nap ( A_WIDTH=>17. S_WfDTH=>8 1 
port map( 
resez-n => reset-n, 
clock => clock. 
enable => =able. 
a => ai-minus-bi , 
b => w-r-del. 
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port map ( 
=eset-n => reset-n. 
clock => cLock. 
enable => enable. 
a => ar-minüs. 
b => w-i-del. 
P => p3 

1 ; 

a=-minus-br <= s x t (  a-r. 27 - s x t (  b-r, 17 1 : 
ai-minus-bi <= s x t (  a-i, 17 1 - s x t  ( b-i, i7 1 : 

p0-minusgl c= sxc ( PO. 2 6 )  - s x t  ( pl. 26 1 : 
p 2 s l u s q 3  c= sxt ( p2. 2 6 )  - SX=( p3, 26 1 : 

Y-r c= p0-minusql(25 downco 10) : 
Y-2 c= p Z j l u s g 3  (25 dowzco 1 0 )  ; 

end if; 
end if; 

end process: 

end architecrur-e =cl;  

library ieee; 
use ieee-std-logic-1164-all; 
use ieee.~td-iogic-~ith.a1I; 
use ieee.std,logic-unsimed-all: 

encity cf ft1024 is 
port ( 

reset-n : in 
clock : in 
enable : in 

star: : in 
bus y : out 
done : out 

data-in : in 
data-out : out 

1 ; 

std-logic; 
std-logic: 
std-logic; 

std~logic,vecror î 7 downco O 1 ; 
std,logic~vectoril5 downto O )  
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e-?d entity cfftlO24; 

architecture rtl of cfft1024 is 

resec-n : i-2 std-logic; 
clock : in std-logic; 
enable : in std-logic; 
ad* : out std-logic-vector[WIDTH-1 downto O )  

1 : 
end coaponezr addrgen-bitrev: 

componenc aadrgezx,linear 
generfc ( WIDTE : positive r 
par= ( 

reset-n : i-? std-logic; 
ciock : i22 5 t ~ : w i ~ :  
enable : in scd,lagic: 
adcïr : out s~~logic~vector (WIDThDTh-1 downto O ) 

1 : 
egù component aàckgen-linearr 

component butterfly 
Porc ( 
reset-n 
clock 
enable 
w-r 
w-L 

a= 
a-i 
b-r 
b-i 
x-r 
x-i 
Y 3  
Y 2  

1 : 

: in 
: in 
: in 
: in 
: 2 2  - ;" . A-- 
: in 
: in 
: in 
: cut 
: out 
: out 
: out 

scd-logic; 
std-logic: 
std-logic; 
std-logic-vector ( 7 downto 0 )  : 
s tà-logic-vector ( 7 à m t o  O 1 ; 
std~logic~vector(l5 downto O )  ; 
srd~logic~veccor (15 downto O ; 
st~-logic-vecror (l5 downto O 1 : 
std-logic-vectorîl5 c5owr.to O ) ;  
scd-logic-vector i 15 downco O 1 ; 
scd~logic,vector(l5 dounto O )  ; 
std-logic-vector i 15 downco O ; 
std-logic-vector (15 downto O 1 

end conponent butterfly; 

componezz coctroller 
port ( 
resec-n : in 
clock : in 
enable : ir, 
stazt : in 
bilsy : ou= 
dace : out 
engine-enable : out 
k : out 
bank0 r-we : out 
bank0 i-we : out 
banklr-we : out 
bankl i-we : out 
enable-w-addrgen : out 
enable-r-addrgen0 : out 
enable-r-addrgenl : out 
select-r-addrgen : out 
w r i  te-sel : out 
read-sel : ouc 
bank-s el : out 
skew-enable : out 

1 ;  
end component controller: 

component mem-bank 
part ( 
clock : in std-logic; 

std-logic; 
std-lagic: 
stà-logic; 
s td-logic : 
ste-logic: 
std-logic; 
scd-logic ; 
std-logic-vector ( 8 ciownto O : 
std-logic: 
std-logic ; 
std-logic: 
std-logic; 
std-logic; 
çtd-logic; 
std-logic; 
std-logic: 
std-logic; 
std-logic; 
std,logic,veccor ( 1 downto O 1 ; 
s td-logic 

we : in std-logic: 
w-addr : in std_logic,vector ( 8 downto O) ; 

113 
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w-din : in std-logic-vector(l5 downto O); 
r-adàr : in std-logic-veccor( 8 dawnto O): 
r-douc : out çtd,logic~veccor~iS downto 0) 

1 : 
end component mem-bdnk: 

componenc skew-buffer 
port ( 

reset-n : in stc?_logic: 
clock : in std-logic: 
enable : in std-logic; 
dino : in std-logic,vectoz(l5 do-to 0); 
dinl : in std-logic,vector(l5 do-to 01; 
dou:0 : out scd~logic~veccor ( 15 downto 0 1 ; 
doutl : out std-logit-vecco=(l5 downto O) 

1 ; 
end component skew-buffer; 

cornpanen: twiddle-facrors 
por t  [ 

k : ic çtd-logic-vector [ 8 downco 0 1 : 
w-: : ooc s~d-:~gic-vect~z( 7 6rr*u=c O 1 ; 
w-i : out scd-logic-vec=ori? oowr,zo OI 
; 

ezd componec= cwiddle-factors : 

-- _-_____-------------------------------------------------------------------- 
-- - Regisrered S i g n a l ~  
-- --------------------------------------------------------------------------- 
signal k : std-logic-vector( 8 downto O): 

signal engi 
signal w-r 
signal w- i  
signal a-r 
signal a-i 
sigxal b-r 
sigr-ai b-i 
signal x-r 
signal x-i 
sigrial y-r 
signal y-i 

xe-enable : std-logic; 
: st6-logic-vector ( 7 downto 0 1 ; 
: std-logic-vector ( 7 downto O 1 ; 
: std-logic-vector(l5 downto O) ; 
: std-logic-vectcr (15 downto 0 : 
: sta-logic-veccor l 15 domta 0) ; 
: scü-Logic-vector(l5 downto O); 
: scd,logic,vector (15 downto O) ; 
: std-logic-vecror (15 domto O ) r 
: sta-logic-vecror t 1 5  downto 0 1 : 
: std,logic,vector(l5 downto O); 

signai skew-enable : std-logic; 

signal data-real0 : scd,iogic,vector(l5 downto O) ; 
signal data-reall : std-logic-vector(l5 aowcro O) ; 
sig?.al c?ata,-gO : scd~logic~veccortL5 dowrxo 0); 
signal data-magl : std,logic,vector ( 15 downto 0 ) : 

signal bank0t-we : std-iogic; 
s i -.a 1 bank0 r-w-addr : scd~logic~vector ( 8 downto O) ; 
signal bank0r-w,din : std-logic-vecror ( 15 downto O 1 ; 
simal bank0r-r-addr : std~logic~vector ( 8 downto O 1 ; 
signal bank0r-r-dout : std-logic,vector(l5 downco 01 ; 

signal bank0i-we : std-logic; 
signal bank0i-w-addr : std-logic,veccor[ 8 downto O): 
signal. banJcOl-w_din : sc~logic,vector (15 downco 0) ; 
signal bank0i-r-ad* : std-logic-vector ( 8 downto O )  ; 
signal bank0i-r-dout : std-logic,veccor (15 downto O 1 : 

s ignal bankl r-we : std-logic: 
signal banklr-w-ad* : stdJogic,vector ( 8 downro O) ; 
signal banklr-w-din : std-logic,vector(i5 downto O) ; 
signal banklr-r-addr : std-logic-vector ( 8 downto O 1 : 
signal banklz-r-dout : scd,logic~vector (15 downto O )  : 

signal bankli-we : std-logic; 
signal bankl i-w-addr : std,logic,vector( 8 downto O) ; 
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signal bazkli-w-&n : scd-logic-vector(l5 downco 0) : 
signal bankli-r-ad* : scd-logic-vector t 8 àownto O : 
signal bankli-r-douc : st~logic,vector(15 downto O) ; 

s igral wri te-adüress : std-logic,vector( 8 downto 0); 
siwal eranle-w-adàrgen : st6-iogic; 

signal read-address : std-logic,veccor( 8 downto O ) :  
signal read-address0 : std-logic,vector( 8 dowcco O): 
signal read-addressl : scd-logic,vector( 8 downco O) : 
signal enable-r-addrgen0 : std-logic; 
signal enable-r-adcirgenL : std-logic: 
signai select-r-addzga : scd-logzc : 

signal write-sel : std-logic: 
signal read-sel : SC&-logic; 
signal bank-sel : std,logic,vector(l downto O): 

read-adclrgen-lin : aockgen-linear 
generic map( WIDTH=s9 ) 

port map ( 
reset-n => reset-r., 
clock => clock. 
e n d l  e => enable-r-addrge-0. 
aàdr => read-address0 

1 : 

read-addrgen-br : addrgaq-bi c c r  
generic mapi WIDTK=s9 1 
porc map( 

=eset-" =w reset-n. 
clock => clock. 
enable => enable-r-addrgenl , 
ad& => read-addressl 

1 : 

engine: butterfly 
port  map ( 

reset-n => reset-n. 
d o c k  => clock. 
enable => engine-enable, 
w-r => w-r. 
w-i => w-1. 
a-= => a-r. 
a-L => a-1. 
b-r => b-r, 
b-i => b-i. 
x-T => X-r. 
x-i => X-1. 
Y-= => y-r. 
y-i => y-i 

1 : 

fft-controller: controller 
port map ( 

resec-n => resec-n. 
clock => clock, 
enable => enable. 
scaxf => stazc, 
 bus^ => busy, 
done => done, 
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twiddles : tuiddie-f accors 
port map ( 

k => k. 
w-r => w-r. 
w-1. => w-1 

1 ; 

process( reset-c, clock 1 
begin 

if ( reset,n='O ' then 
ParkOr-w-Cin c= (others=> ' O ' 1 ; 
.&O i-w-din s = lothers=> ' O ' 1 ; 
h,?klr-wwdin c= (ochers=>'O'): 
baakri-w-àin c= (ochers=>'O'): 

àa=a-out c= (others=w O ' ; 
elsif [ rlslng,eÜge(clock) 1 cher- 

if i enabLe=' l' ) then 

if ( cite-sel='Om ) &en 
bank0r-wW&n c= ( zero8 & dard-in) ; 
bank0i-w-din c= (zero8 & data-in); 
Darkiz,w-c2n c= (zero8 & &ta-in) ; 

bankli-w-din <= (zero8 & data-in) ; 
else 
ba-akOr-w-cia c= data-real0 ; 
ba,?jcOi-w-din c= dard-imago: 
banklr-w-ciin c= data-reall; 
bankli-w-din <= data-inagl; 

end if; 

data-ou= c= (others=> 'O ' : 
if ( rea&sel='l' ) then 
case bank-sel is 
when ' 00 '  =w 
data-ouc c= bank0r-r-dout; 

when '01' => 
àaca-out c= bank0i-r-dout; 

when '10' =w 
data-ouc c= Mir-r-dout; 

when '11' =w 
data-ou t c= bankli-r-dout : 

when ochers => nu21; 
end case; 

end if; 

end if; 
end if; 
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er.d process: 

- - 
l ibra-sr ieee: 
cse ieee.std-logic,ll64.all; 
cse ieee.st&logic,arith-alL: 
use ieee.sc&iogic,cns:gned.all: 

encicy controller is 
porc ( 

reset-r, : in 
clock : in 
enable : in 

: in 
: out 
: out 

engine-enable : out 
k : out 

bb.rk0 r-we : out 
ba,-r)cO i-we : out 
bëmkLr-we : out 
bankl i w e  : out 

enable-w-adàzgk? : OU: 
enable-raddrgenO : out 
enable-r-addrgal : out 
select-r-addrgen : out 

-4 , , - &e-sel : out 
reac-sel : out 
bank-sel : out 

skew-enable : out 
1 : 

end entity controller; 

scd-logic; 
std-logic-vecror(8 Bownto O): 

std-logic; 
std-logic: 
scd-logic: 
std-logic: 

std-logic; 
std-logic; 
scd-logic ; 
std-logic; 

scd-logic: 
SCCI-logic; 
std-logic-vector ( 1 downco O 1 : 

scd-logic 

archi=ectce rtl of conrroller is 

-- - Componenet Declarations 
companenc regqipe-single 
generic ( 

D r m  : positive 
1 ;  
port ( 

resec-n : in stci-logic: 
ckck : ic std-10gic; 
enable : in std-logic; 
i : in std-logic: 
O : our std-logic 

1 : 
end component; 

-- - Constarxts h New Types -- ----_---------------------------------------------------------------------- 
constanc N-WINTS : integer := 1024: 
cons tant N-DATA : integer := N-POIKTS'2; 
cons t m  t N-DATA-DIV;! : integer := N_DATA/2; 
constant NODES-PER-LEVEL : integer := N,POINTS/Z; 

- - conscant L-S : iateger := ~o~~(N-POINTS): 
conscanc LEVELS : inreger := 10: 
constant NODES : inceger : = LEVELS 'NODES-Pm-LEVfL ; 

type ControllerScateType is ( IDLE, 
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WR-DOR. WR-DOI, WR-DIR. Pm-DLI. 
START~PROCESS. PROCESS-NODE. FLUSH. 
RD-DOX. RDJOI, RD-DTR. RD_DlI, 
DONE-PROCESS 1 :  

attribute syn-encoeng of ControllerStateType r cype is 'onehot'; 
signal ctrlgs, ctrl-ns : ConcrollerStateType: 
a=rribute syn_state-machine of ctrlqs : signai is C r u e :  

signal enable-w-addrgen-int O : st&-logic: 
signal enable-w-adàrgen-=nt> : std-logic: 
signal enable-w-addrgerr,inti-del : std-logic; 

signal '&Or-weO 
signal bark0i-we0 
signal banklr-ne0 
s = m a l  baz?kli,weO 

sigr.al Bk?kOrwel 
sigr-al 'DanjcOi-weL 
signai banklrwei 
sigxal barddi-wel 

signal backOr-wel-àel 
signal bank0i-wel-del 
signal banklrwel-àel 
signal bar>~li-wel-del 

: std-logic; 
: sce-logic: 
: 5x5-logic: 
: scd,logic: 

: sta-logic: 
: std-logic: 
: std-logic: 
: std-logic: 

signal skewenable-int : sccl,logic: 

signal data-counc 
signal node-counc 
signal flush-count 
simal done-int 

: std-logic,vector(10 downto O); 
: scd_logic,vector(12 downco 01; 
: sed-logic,vector ( 3 downto O )  ; 
: std-logic; 

%pipe-bardcor-we: reggipe-single 
generic map i DEPTH=212 1 
porc map ( 
reset-n => reset-n. 
clock => clock. 
enable => enable. 
i => bank0r-wel. 
O => baak0 r-wel-del 

1 ; 

ipipe-bank0 i-we : reggipe-single 
generic map ( DEPTH=>12 
port map ( 

resec-n => reset-n. 
clock => clock. 
enable => enable. 
, => bar-k0 i-wel , 
O => bank0i-wei-del 

1 : 

isipe-banklr-we: reggipe-single 
generic map ( DEPTH=>l2 
port map ( 



www.manaraa.com

i q i p e - W l i w e :  reggipe-single 
genezic map ( DEPTti=>l2 1 
port map ( 

reset-n => reset-n. 
clock => clock. 
enable => enable. 
i => Mli-wel. 
O => bankli-wel-del 

1 : 

iqipe-skew-ecable: reg_pipe,single 
generic map ( DEPTH=>iO 1 
porc map ( 

reset-n => reset-n. 
clock => clock, 
enable =w enable, 
I => skew-enable-in:, 
O => skew-enable 

1 ; 

busy 
k 

<= '0' when( ctrlgs=IDLE 1 else '1': 
c= shi ( noàe-count (8 daw~ro 0 1 . node-courit ( 12 downro 9 1 ; 

enajle-w-adegeq c= enable-w-adkgen-intO o r  enable-w-a6&gen-intI-OeL; 
bbz0 r-we c= bank0r-ue0 or banJc0r-wel-del; 
bankO i w e  c= bank0i-we0 or bank0i-wel-del; 
b-kl r w e  c= Mir-we0 or Wlr-wel-del: 
bazkl i-we <= bankli-we0 or barddi-wel-àel; 

sync: process ( reset-r,, clock ) 
begir, 

if ( resec-n='0 ' 1 &en 
ào?,e,inr C= '0': 
done <= '0.; 
da ta-count c= ( others=> ' O ' 1 ; 
node-COL? t c= (others=> ' O ' 1 ; 

bank0r-we0 
bankOiwe0 
barkl r-we 0 
bankl iweO 
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case ctzlgs is 
whe- IDLE => 
e-zdble-r-aâdrge-O <= '0. 
select-r-addrger, c= '0'; 
data-count <= (agaers=> ' O ' ) ; 
node-count c= (o-ezs=w'O') ; 
f lush-count <= (others=w'O' ) ; 

when W D O R  => 
wrL te-sel C= ' O * ;  
bank0r-we0 <= .la; 
data-count <= data-coi;nc + ' I ' ; 

when WR-DI1 => 
cite-sel C= ' 0 ' ;  
bankli-we0 C= '1.; 
data-count C= data-cowc + '1' ; 
enable-w-addrger.-incO c= ' I - ; 

when START-PRQCCSS => 
w r î  te-sel C= '1.: 
enable-r-addrgen0 c= '1'; 
=able-r-addzgenl <= ' O ' : 
select-r-addrger: c= ' 0 ' : 
node-count <= (others=>'O'); 
if ( ctrl,ns=PROCESS-NODE ) then 
eng i ne-enabl e C= .lm; 
skew-enable-int <= -10: 

end if; 

when PROCESSJïODE => 
enable-w-addrgen-intl c= '1'; 
bank0r-wel <= -1'; 
bankOi-wel <= -1'; 
banklr-wel C= *1*: 
Sankli-wef <= *1'; 
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zode-couac <= node-count + '1': 

wher, FLUÇH => 
flush-counc <= flush-count - '1'; 
if ( ctrl,ns=~D-~O~ ) then 
done-int .z= . rS:  
engine-enable c= '0': 
skew-&?ab1 e-int c= ' O ' ; 
enable-r-addzge30 <= '0'; 
select-r-addrge- <= '1'; 

end if; 

when RD-Dl1 => 
read-sel .z= -1.; 
ban)c_se7 C= -11': 
da ta-count c= data-counc + ' l' : 

when ochers => 
daca-count c= :others=>'O'): 

end case: 

ecà Lf; 
en6 iE; 

ezà pzocess srilc: 

combin: process( crrl-ps, seut. data-count. node-count, flush-count 1 
beg i n 

case c t r l g s  is 
when IDLE => 

if ( srart='O' 1 the- 
ctzl-ns c= IOLE; 

e l s e  
ctrl-ns c= R D O R :  

end if: 

when W'R-DOR => ctrl-ns <= WR,DOI; 
when WR-DO1 => ctrl-ns <= WR,DlR: 

if ( ~~~~-COUKI~=N-DATA-D~V~-I 1 th- 
ctrl-N <= WR-DIR: 

else 
ctrl-ns c= WR-DOR; 

end if; 
when WR-DTR => ctrl-ns <= WR-D1I: 
when -Dl1 => 
if i daea,count=N-DATA-l 1 then 
ctrl-ns c= ST-PROCESS; 

else 
ctrl-n.5 c= WR-D1R; 

end if: 

when STkRT-PROCESS => 
ctrl-ns <= PROCESSJODE; 
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when PROCESS-NODE =w 
if ( node-count=NODES-1 1 tha 
ctrl-ns c= FLUSH: 

else 
ctzl-ns c= PROCESS-NODE; 

end if; 

when FLUSH => 
if ( flush-count/="llOOœ 1 then 

CC"I +, a_= C= FLGSHr 
else 
ctrl-ris c= RD_DOR: 

end if: 

when C D O R  => ccrl-rs <= RD-DOT: 
wkec FEI-DO1 => 

if ( data-corrnc=X,DATii-DI=-1 i th= 
ctrl-ns c= RD-DIR: 

else 
cïrl-ns <= RD-DOR; 

&?d if: 

w h e n  DONZ-PROCESS => 
crrl-ns c= IDLE; 

whe? others => ctzl-ns c= IDE: 
end case; 

end process combin; 

----------------------________________________________________--------------------------------------------------------- 
- - 
------------------_-________________________________________----------------------------------------------------------- 
libra--y ieee; 
libra-zy syr-plify; 
use i e e e ~ s c d , l o g i c ~ l ~ 6 4 . a l l :  
use ieee-std-logic-krirh-all; 
use ieee-scd-logic-unsigned-ail; 
=se s-plify . a=crinuces - d l  : 
er-cicy mein-Sa& is 
port f 

d o c k  : in scd-logic; 

we : in scd-logic; 
w-addr : in std-logic-vector( 8 downto O): 
w-dir. : in std-logic,veccor(l5 dow~to O): 

r-addr : in stc2-logic-vector( 8 downto O); 
r-dour : ouc scd~logic~vector~L5 downzo 0) 

1 : 
en6 ectity mm-bank: 

architecture rtl of mem-bank is 
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attribute syn-ramscyle of mem : signal is 'block-rw': 

-- * Combinational Assigrments 
,, * * * * t f * * * * * t * * * . * . * * * * * n . * * * . * * * * * * * t t * * * * * * * * * * * * . * . * * . * * * * * * * . * * * ~ r . * * * * *  

r-dout <= nem( cor,v,integes(r-add~~reg) 1 :  

Wrice: process( clock 1 
Segir? 

if ( rising,e&e(clock) 1 chen 
if i we='i' 1 theo 
men( corw-integer(w,addrI 

er.6 if; 

r,a&r,reg c= r-acick; 
ez?C if; 

ecd process wrice; 

enc arcniteczure ztl: 

libra-y ieee; 
libra-ry synplify: 
use ieee.std,logic,ll64.ali; 
=se ieee.std,logic,ariththali; 
cse ieee.std,logic,unsignededall; 
--use ieee-std-logic-signe-dll; 
use synplify.attrzbutes,alll: 

enciry rnult is 
generic ( 

A-WIDTE : positive := 8; 
3 - h l ~ m  : positive := 8 

1 : 
porr ( 

reset,.? : in 
clock : in 
er.able : in 

a : in 
b : i n  
P : OUC 

) ; 
end entity mult: 

downco O ; 
dowr,to 0 ) ; 
downto O) 

architecture rtl of mult is 

component regqipe-single 
generic ( 

D E m  : posirive 
1 ; 
port i 
reset-n : in std-Logic; 
clock : in stclogic: 
enable : in std-logic: 
i : in std-logic; 
O : out std-logic 

1 : 
end component; 
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signal a-reg : ATYPE; 
sigzal b-reg : std-logic,vector(B-mDTH-1 dowrxo 1) ; 

signal ppT : st6-logic-veccor(A-~DTH downto O); 
signal pp2 : std-logic-veccor(LWIDTi-! down~o O): 
signal pp3 : std-logic,vecror (A-W?PM-I downto 0 1 ; 
signal pp4 : std~Logic,veccar (k-WII3TH. downto O 1 ; 
signal pp5 : std,logic,vector(A-mDTH downto O ) ;  
signal pp6 : scd,Logic,veccoz~A_WIDTH downto 0 1 ;  
sivaai pp7 : std-logic-vector (A-WIDTH dobzto 0 )  ; 

i-bri: for i Fa B - W I ~ - I  downto 1 geceraze 
F-b: regqipe-single 
geceric map ( DEFTH=>i 
p o r t  map ( reset,n=>reset,n, c~ock=~clock. enable=>cable, i=>b(i). o=>b-regii) ) ;  

ezd generate: 

-- Calculate the final result 
i g O  : regqipe-single 
generic map ( DEPTH=>B-WIDTE-L 1 
port map ( reset-n=>zesec-n, clock=>clock. enable=>ezable, i=wpp0(0). o=>p(O) 1 ;  

i g n :  for i in B-WIDTH-2 downto 1 generace 
ign: regqipe-single 
generic map ( DEFTH=>B,WflYïH-1-i 1 
porc map ( resec,n=>reset,n. clock=~clack, enable=>enable, i=>ppii) (O), o=>p(i) 1 ;  

errd generace: 

-- Calmlate the firsc multiplication 
for i in A-WIDTH-~ downco O loop 

ppO[i) c= a(i1 and b(0); 
end loop: 

-- Calculate the ictermediate results 
for i in 1 to 8-WIDTH-1 foap 

if i=l then 
if ( b-reg(i)='l' 1 then 
pp(i) <= (ppO (A,WIDTH-1) & ppO (A-WIDTH-1) & ppO (A-WIMW-1 downto 1) ) + 



www.manaraa.com

else 
if ( b-reg(i)='l0 ) chez 
P P ( ~ )  C= (pp(i-1) (AJJIM3I) & pp(i-1) (A-WIDTH 

(a,reg(i) (A-WIDTH-L) & a-regti) : 
else 
pp(i) c= (pp(i-I) ( L W I D T H )  & pp(i-1) (A-WIDTr; 

er-d if : 
end LE: 

end loop: 
=à if; 

end if: 
eza process; 

es& architecture rcl; 

enrity reggipe is 
generic ( 

DEPTH : pos f cive; 
W I m  : posicive 

1 ; 
port ( 

reset-n : in std-logic: 
clock : in std-logic: 
enable : in std-logic: 
i : in std-logic-vector(WfM'H-1 downto O ) :  
O : ouc std,logic-vector(hKDTH-1 downco O) 

1 : 
--begiz 
- - assert DEPTHz-1 repart 'Tesc' sevezicy -OR; 
.. - assert ZI'IDTI-:>l report 'Tesc' severicy -OR; 
en6 enti ty reggipe; 

arcnitecture rcl of regqipe  is 
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ez4 arc,iitectu=e rtl: 

library ieee: 
use ieee-std-logic,ll64.all: 
use ieee-std-logic-arith-ail; 
use ieee.std,logic,unsigr.eddall; 

encity skew-buffer is 
port i 
reçec-n : in std-10gic: 
c lock  t ia std-logic; 

dout0 : out std-logic-vecror(l5 dowxo O): 
doccl : ouc scd-iogic-vecror(15 do-to 0 )  
: 

enC e-ci :y skew-bu£ fer; 

archi:ectUe rtl of skewJmf fer is 

signal reg0 
signal reg1 
signal reg2 
sigzal reg3 

s igoal in-cotxqc : s~d~logic~veccar(1 aownco O) r 
sigaal ic-comt- el : st&-logic-vectortl downto O ) ;  
signal i~,couxz=,delS : st&,logic,veccar(l àownto 01; 

beg in 

process ( reset-n, clock ) 
begin 

if ( reset,n= ' 0 ' 1 then 
reg0 <= (otSers=> (others=s ' O ' 1 1 ; 
reg L <= (others=> (others=> ' O ')); 
reg2 c= lochers=> (others=> LO ' 1 ); 
reg3 c= (others=> (others=w ' O ' 1 1 ; 
in-count <= (others=> ' O ' ) ; 
in-count-del c= (others=> ' O ' ) ; 
in-count-del2 <= (ochers=> ' O ' ) ; 
dou t O <= (ochers=> ' O ' ) ; 
dou t 1 <= (ochers=>*O' ) ; 

e k i f  ( rising,&ge(clockl 1 then 
if ( enable='lV then 
in-count c= î.n-count + ' 1 ' ; 
in-count-del c= in-count; 
in-count-del2 <= in-counc-del; 

case in-count is 
when ' 0 0 '  =w regO(1) c= dinl; regO(0) c= din0: 
wnen -01' => regL(1) c= dinl; regl(0) c= din0; 
w h e n  "10' => reg2 ( 1) c= dinl ; reg2 (0 1 <= din0 : 
w h e n  others => reg3 ( 1) c= dinl; reg3 (0 1 c= din0 : 
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X'F4-, X'F3'. XoF3', X'F2'. 
X'EE', X'ED', X'EC", X'EC". 
X'E8'. X'E7'. X'E6'. X'E5'. 
X0E2'. X'EL'. X'EO', X'DF'. 
X'DC" . X'DB' . X'DA' , X'D9'. 
X'D6". X'DS'. X'D4'. X'D4'. 
X'DO ' , X'CF' . X'CE' , X'CE' , 
x-CA-, x'c9'. x 'c9- ,  x 'c8-.  
X'CS', X'C4'. X°C3', X'C3'. 
X'BF', X'SF', X'BE', X'BD'. 
X'3A'. X'B9'. X089', X'B8'. 
X'85".  X'54'. X'B4'. X033', 
X'30'. X'h-', X'AF', X'AE'. 
X'AB' , X'AS' , X'AA'. X 'm' .  
X'A7'. X'A6'. X0A6", X'AS'. 
X'A2'. X'A2'. X'AI'. X'AI', 
X'9E'. X'9E'. X09D', X'9D'. 
X '9km.  X'9A'. X'9A'. X'99'. 
X'97'. X'96'. X096', X'96'. 
x - 9 4  . X'93'. X'93'. X'92'. 
x - 9 0 ' .  X 0 9 0 " .  X'90'. X'8F'. 
X'8E'. X'8D'. X'8D'. X'8U'. 
X08B', X'89'. X-89'. X'BA', 
x -89 ' .  ~ ' 8 9 ' .  X'88'. X -88" .  
X - 8 7  - . X-87' .  Xm87- ,  xœ86 ' ,  
X-85 ' .  X'85'. X'85', X'85'. 
X-84 ' .  X'84'. X'84'. X'84'. 
X-83 ' .  X-83' .  X'83'. X-83'. 
X'82'. X-82'. X'82'. X'82'. 
X'82'. X'82'. X'82'. X-82'. 

1 : 

X'FI', X'FO', X'EF', X'EF', 
X-EB-, X-EA-, x - ~ - .  X - ~ 8 ' .  
X'E5'. X'E4'. X'L3'. X'E2'. 
X'DF'. X'DE'. X'DD', X'DC'. 
X'D9'. X'D8'. X'D7'. X'D6'. 
X'D3 ' . X'D2'. X'D1'. X'D1 " . 
X'CD', X'CC'. x-cc-, X'CB' . 
x'C7'. x'C7'. X'C6'. X'CS'. 
X'C2 ' . X'C1' , X'CI' . X'CO ' , 
X'BD', X'BC', X'BB', X'BB'. 
X'B7'. X'B7'. X'B6'. X'BS' . 
x - a 2 - .  X - ~ 2 ' .  X -a l - .  X-SI-. 
X'AE'. X'AD'. X'AC'. X'AC". 
X'A9'. X'A8'. X0A8'. X'A7'. 
X'A5'. X'A4'. X"A.3'. X ' a ' .  
X'AO'. X'AO'. X'9F0. X'9F'. 
X'9C'. X'9C'. XU95', X'9B'. 
X"99'. X'98'. X'98'. X'97'. 
X'95'. X'95'. X'94'. X'94'. 
X'92". X'92'. X'9i ' .  X'91'. 
X'8F0. X'8f ' .  X ' 8 H ' .  X'BE' , 
Xœ8C'. X'8C'. XW8C'. X'8B'. 
X'8k'. X'8A'. X'89'. X'89'. 
X-88' .  X'88". X 0 8 ï ' ,  X'87'. 
x'86'. X-86'. X'86'. X985 ' ,  
X08S', X'84'. X-84'. X"84' .  
X-83'. X'83'. X-83- ,  X-83 ' .  
X-82' .  Xg82', X'82'. X'82'. 
X'82'. X'82'. X'82'. X082 ' ,  
X'82'. X-82'. X'82'. X"82 '  

cons taq t  WI : LookupTable := ( 

X'OO", X'OO', X'FF'. X'FE', X'FD'. X 'm' ,  X'FC', X'FB'. 
X'FA'. X'F9'. X'f9'. X'F8'. X'F7'. X'F6'. X'F6'. X'C5". 
X'F4'. X'F3".  X'F3'. X'FZ' , X'F1'. X'FO' . X'EF' . X'EF" . 
X'EE', X'ED', X'EC', X'EC', X'EB', X'EA', X'E9'. X'E8'.  
X'E8'. X027 ' ,  X'E6". X'E5'. X'E5'. X'E1". XoE3'. X'E2'. 
X'E2'. X'El', X'EO', X'DF'. X'DF', X'DE', X'DD', X'DC'. 
X'DC', X'DB', X'DA'. X'D9'. X'D9'. XgD8', X'D7'. X'D6'. 
X0D6',  X'DS', X'D4'. X'D4'. X'D3'. X'D2'. X'Dl', X'DI'. 
X'DO'. X'CF'. X'CE'. X'CE', X'CD'. X'CC'. X'CC', X'CB'. 
X'CA', X'C9", X'C9'. X9C8', X'C7". X'C7'. X'C6'. X'CS". 
X'C5'. X'C4'. X'C3'. X'C3'. X'C2'. X"C1'. X'CI'. X'CO', 
X'BF', X'BF'. X'BE'. X'BD'. X'BD', X'BC', X'BB', X'SB'. 
X'3A'. X'B9'. X'B9". X0B8', X'B7'. X'B7", XgB6', X'BS'. 
X'BS' , X'BO'. XmB4', X'B3'. X'B2' , X'B2'. X'B1' , X'Bl ' ,  
X'BO ' , X'AF' . X'AF' , X'AE' . X'AE' . X'AD' , X'AC' , X'AC' . 
X'AB', X'AB'. X'AA', X'A9'. X'A9'. X0A8', X'A8'. XgA7',  
X'AÏ". X-86 ' .  X'A6'. X'A5'. X' iS' ,  X'A4'. X'h3'. X ' M ' .  
X'X!', X"A2'. X'Al'. X 'A l ' ,  X'AO'. X'AO', X'9F'. X'9F'. 
X'92', X09E',  X'9D'. X'9D'. X'9C'. X'9C'. X-99' .  X'9B'. 
X'9k'. X09k ' .  X'9A'. Xg99', X'99'. Xw98', X'98'. X'97'. 
Xg97',  X-96 ' .  X-96'. X'96'. X'95', X'95'. X'94'. X'94'. 
X094',  X'93'. X093', X'92'. X'92'. X-92" .  X'91'. X'91'. 
X'90'. X'90'. X'90'. X'8F'. X'BF', X'SF', X'8E'. X'8E'. 
X'8E'. X'8D'. X'8D'. X'8D'. X'8Cg, X98C', X98C', X'BB'. 
X08B',  Xœ89 ' ,  X98B', Xg8A', X08A', X'8A'. X'89'. X'89'. 
X-89 ' .  X'89'. X'88', X'88', X'88'. X988', Xg87', X-87' .  
X'87'. X'87'. X-87'. X-86'. X'86'. X086',  X'86', X'85'. 
X'85'. X'85".  X'85', X-85'. X "85" .  X'84'. X'84'. X'84'. 
X'84'. X'84'. X'84'. X'84'. X.'83', X'83'. X'83'. X'83'. 
X083',  X083 ' ,  x -83 ' .  X'83'. X'82'. X-82'. X'82'. X082',  
X'82'. X'82'. X-82'. X'82'. X-82'. X082', X'82'. X'82'. 
X'82'. Xw82',  Xg82', X'82". X'82'. X082', X'82". X082 ' ,  
X'81', X'82', X-82'. X'82'. Xœ82' ,  X'82'. X'82'. X'82'. 
X'82'. X'82'. X'82'. X'82'. X'82'. X082', X'82'. X'82'. 
X'82'. Xg82',  X082', X-82'. Xm82' ,  X'83'. X'83'. X'83'. 
X-83 ' .  X'83'. X-83'. Xg83', X'83'. X084', X'84'. X -84 ' .  
X'84'. X'84'. X'84'. X'84'. X'85'. X'85'. X085', X'85'. 
X-85 ' .  x -85 ' .  X-86- ,  X-86'. X-86 ' .  X-86'. X-87'. X-87 ' .  
X 0 8 7 " ,  X987 ' ,  X'87'. X'88'. X'88'. X'88'. X'88'. X'89'. 
X'89', X'89'. X'89'. X'8A'. X'EA', X08A', X'8Bw, X'8B'. 
X'8B'. X'BB', X'8C'. X08C', X'8C'. X'8Dm, Xg8D', X'8D'. 
X08E',  X'8E'. X'8E'. X'8F'. X'8Fw. X08F'. X'90'. X090 ' ,  
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x-go-, 
x-94 ' . 
X'97'. 
X' 9A' , 
X'9E'. 
X'A2'. 
X'A7 ' , 
X'AB' , 
X'BO' , 
X'BS' , 
X' BA' , 
X' BÏ' , 
X'C5'. 
X'CA' , 
X'DO ' , 
X'D6 ' . 
X'DC' . 
XgF2', 
X'E8'. 
Xe EE' . 
X'F4 ' . 
X' FA' . 

) : 

X"91'. 
X'94'. 
X'97'. 
X'9B'. 
X'9F'. 
X'A3 ' . 
XœA7', 
X'AC' . 
X'BI' . 
X'BS' . 
X'BB' , 
X'CU' . 
X'CS' . 
X'CB' . 
X'DT' . 
X'D6'. 
X'DC' . 
X'E2'. 
X'E8 ' , 
X'EF' , 
X'FS ' , 
x-F9' . 

X'91' . 
x-94 ' . 
X'98'. 
X'9B'. 
X'9F'. 
X'A3 ' . 
X'A8". 
X'AC' , 
X'Bl' . 
X'B6'. 
X'BB' . 
x-ci- , 
X'C6 ' . 
x-cc- . 
X'DI' . 
X'D7'. 
X' DD' , 
X'E3 ' . 
X'E9" . 
X'EF' . 
XgF6', 
X' LC' . 

X'92'. XD92', 
X'95'. X'95'. 
X'98'. X'99'. 
X'9C'. X ' 9 C ' .  
X' A0 ' . X' A0 ' . 
X'A4'. X'AS', 
X'A8'. X'A9'. 
X'AD" , X'AE' . 
X'BS'. X'B2'. 
X'B7'. X'Bf' . 
X-BC- , x-a~-, 
X'CI ' . X9C2', 
xgc7-, X'C7'. 
X'CC'. X'CD', 
X'D2'. X"D3'. 
XgD8', X'D9'. 
X" DE'. X'DF' . 
X'E4'. X'ES' . 
X'EA'. X'B'. 
X'FO'. X'P1'. 
X'f6'. X'F7'. 
.yWFD'. X'FD'. 

X'92'. 
X'96'. 
X'99'. 
X'9D' , 
X'A1'. 
X'AS' . 
X'A9'. 
X'AE' . 
X"B3'. 
x - ~ a  . 
X'BD' , 
X'C3' , 
X'C8'. 
X'CE' , 
X'D4' . 
X'D9'. 
X'DF' . 
X'ES" . 
X' EC' . 
X'FZ' . 
X" FE', 
X'FE' . 

X'93'. X'93'. 
X'96'. Xœ96', 
X'9A'. X'9A0. 
Xg9D', X'9E'. 
X'AT", X'A2'. 
X'A6'. XgA6' ,  
X'Ail'. X'AB'. 
X'AF', X'S", 
X'B4'. X'B4'. 
X'B9'. X'Bg', 
X'SE' . X'BF' . 
X'C3'. X"C4'. 
X'C9'. X'C9'. 
X'CE' . X'CF' . 
X'D4'. X'DS'. 
X'DA'. X'DB', 
X'EO'. X'EI'. 
X'E6'. X'W'. 
X'EC', X'ED'. 
X'F3'. X°F3', 
X'Fg', X'F9'. 
X'FF', X'OO' 

beg iz? 

end architecture rtl; 

D.13. Testbench 44cfft1024_tb.vhd" 

libra-T ieee: 
use ieee.stLlogic,ll64.a11; 
use ieee-std-logic,ari&.all; 
use ieee-std-logic,unsignededa1L; 
use s:d,zextio.all; 
use ieee-std-logic,texcio.all; 

enticy cfftl024,tb is 
ecd entity cf ftl024-tb: 

azchicec:ure benaviorai of cffc1024-~~ is 

component cffcl024 
port ( 

reset-n 
clock 
enable 
start 
busy 
doce 
data-in 
data-ou t 

1; 
end component cfftl024; 

std-logic; 
std-logic; 
std-logic: 
std-logic; 
std-logic; 
std-logic; 
std-logic-vectori 7 downto O ) ;  
std~logic,vector~lS downto O) 

component twiddle-factors 
port ( 

k : in std-logic-vector (8  downto O) ; 
w,r : ou= scd-logic-vector(7 downto O); 
w-i : out std,logic,vector[7 downto O )  

1 ; 
end component twiddle-factors; 
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-- - Const=rs & New Types _ _  ___________________-------------------------------------------------------- 
cons tan t  N-POINTS : integer := 1024: 
constanc N-DATA : i n t ege r  := N-WINTS02-1: 
constant NODESJmLEVEL : inceger  := N-PûINTSfZ: - - constant LEVELS : i n t ege r  := Zog2(N,POïNTS); 
cozs tan= LEVELS : izceger := 10: 
cons tëmt ITERATI ONS : integer : = NODES,PERJEVEL%EVELS: 

type M m e  is arrayc O tu  511 of scdJogic-vector(l5 dovrico 0 ) ;  
signal mem-barzkOr : Mem'Type: 
s igna l  men-bark0i : MeniType: 
s ignal  mem-knklr : M e m T y p e ;  
signal  mem-bankli : Menr?Lpe: 

s ignal  reset-: : std-logic: 
s ignal  clock : std-logic: 
s igna l  enable : std-logic: 
s igna l  s t a r t  : std-logic: 
sigrial h s y  : std,logic: 
s igza l  done : std-logic; 
s ignal  data-in : s t ~ ~ l o g i c , v e c c o r ~  7 ciowx~to O ) :  
s ignal  data-out : scd~ log i c ,vec~or l l 5  downto O ) ;  

port map ( 
reset-n => 
clock => 
enable => 
s t a r t  => 
bus y = > 
doce = > 
&ara-in => 
data-ouc => 

1 : 

reset-n, 
clock. 
enable. 
S t a r f .  
~ S Y .  
done. 
data-in. 
data-out 

cwiààles : twiàale-factors 
port map i 
k => K. 
Kr => w-r, 
w-i => w-i 

1 : 

ClkGen: process 
begin 

reset-n c= ' 0 ' .  '1' a f t e r  5 us; 
loop 

clock <= ' 0 ' .  '1' a f t e r  10 ns: 
w a i t  f o r  20 ns; 

end loop; 
end process ClkGen; 

ApplyStimulus: process - - f i l e  input-vector : cext open read-mode is .source:xrœ; 
f i l e  input-vector : t e x t ;  
variable  1 : l i ne ;  
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variable d-real : std~logic,vector( 7 dowato 01: 
variable d-imag : stt5-iogic-vec=or( 7 downto 01: 
variable data-count : sr~logic~vector(l0 downto O); 

enable c= '0'; 
seart <= '0' ; 
data-in <= (ochers=> ' O ' ) ; 
wait UT--- rising-edge f clockl ; 

waic un=i1 rising,edge(clock): 
szart <= ' 0 ' :  

read ( 1, d-real : 
data-in c= ü-real: 
wait until rising-edge(clocki; 

readlinel input-vector, 1 ) :  
reac i 1. ci-img 1 ; 
daza-in c= d-hg: 
waic irnciï rising-edge (clockl ; 

end ioop; 

file-close( input-veccor 1 :  
wait; 

e2d process ApplyStimulus; 

CaptureOucput: process 

fiLe output-vector : tex: 
variable 1 : lhe; 
variable dara-comt : scd,logic~vecto~~l0 downto O); 

begin 
file,open( output,vector. ~~~~~~~~~~~~. writeaode 1 ;  
ioop 

w a i c  uncil risiag-eàgetclock); 
exi c when done= ' 1' ; 

end loop: 

data-count := iothers=,'O'I; 
while ( data-count/=N-üATA i loop 
wait uncil risiag-edge (dock) ; 
data-count := data-count + '1'; 
writec 1. data-out 1: 
mite( 1. stringg(' 1') 1; 
hwrite( 1. data-out 1 : 
write( 1. string'('lwl 1: 
writeline ( oucput-vector. 1 1 ; 

enci loop; 
write ( 1. dataput ) ; 
m i t e (  1, string'(' C g )  1 ;  
hwrite ( 1, data-out 1 ; 
c i c e (  1, string'(-1') 1:  
writeline ( output-vector. 1 ; 

file,close( output-vector 1 ;  
wait: 

end process Captureûutpuc; 

end architecture behavioral ; 




