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Abstract

Handling Large Data Storage in Synthesis of Multiple FPGA Systems

Amal Khailtash

Implementing DSP algorithms on single or multiple FPGAs has the advantages of
short time to market, non-recurring engineering, and fast prototyping. Most of today’s
FPGAs provide fast arithmetic operations and large enough internal RAM storage that
makes them very appealing to prototyping large systems, even building DSP applications.

So having a good architecture to begin with is a good asset to engineers.

This thesis investigates the issues of handling large data storage in the synthesis of
multiple FPGA systems especially in digital signal/image processing applications. In these
applications very simple to complex algorithms are performed on large amounts of data -
an image. An efficient way to store and access these data, the storage of intermediate
variables locally or on RAM, is presented. The maximum pipeline level is extracted based
on this storage and access scheme. A generic architecture for execution of arbitrary DSP
algorithms with multiple memory banks is proposed. An ILP formulation for assigning
memory banks to variables is presented. For demonstration purposes, a pipelined complex
FFT has been developed in VHDL and the efficient storage and access order for this
algorithm is presented. Also, based on these storage/access orders, the generation of

addresses is done using hardware address generators.
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Chapter 1

1. Introduction

With today’s increasing need for processing power in the telecommunications and
other industries, new techniques are used to accelerate the design turn around and to
decrease the area/power consumption of the system, yet increase the system performance.
New high-level synthesis toois should consider many factors and try to manipulate the
system definition based on the designer’s specification at a higher level of abstraction
before going down to the RTL' code optimization and the final physical implementations.
The need for more architectural enhancements, either manually or by a high-level

architectural synthesis tool is more essential and evident.

New techniques based on hardware/software codesign, which has recently come to
the attention of many researchers {1], {2], [3], [4], [5], [6] and the industry, try to merge
all aspects of system design in one unified environment that can tackle the problem and do
optimizations at all levels and across multiple domains. Codesign tools allow a designer to
specify an algorithm at a high level of abstraction. The tool does a lot of optimizations and
finally partitions the design into a software module that would reside on a general purpose
processor and another module that would go into a dedicated logic such as multiple

FPGA? or ASIC’.

! Register Transfer Level

* Field Programmable Gate Array



With today’s million-gate FPGAs, one can put more functional units like
multiplier-accumulator blocks in parallel and achieve a higher performance. It is also
possible to find a vast variety of soft and hard cores ranging from different DSP*
algorithms, microprocessors, PCI° interface cores, to large cores like MPEG®
encoder/decoder chips, network controller chips, and communications systems building
blocks. There are many design houses and independent designers that work only on
creating IP’ cores, which come complete with testbenches and documentation and

sometimes even the source codes, using the latest EDA® tools.

FPGA devices are ideal prototyping tools for small to medium size systems. The
MTTM’ for systems implemented using FPGAs is small. The NRE'® associated with the
system is also low compared to an ASIC because of the fewer number of steps needed to
arrive at the final design and the chance to enhance previous designs faster and try
different designs in less time. FPGAs also have the advantage of reconfigurability. The
concept of on-the-fly reconfigurable boards is not new. In fact there have been many
papers on this subject [7]. There are also commercial products that make use of this
technique and the reconfigurability of the SRAM based FPGAs. One such product is the

MEGA-OPS system that has multiple FPGAs and three memory banks on a single board.

? Application Specific Integrated Circuit
* Digiral Signal Processing

3 Peripheral Component Interconnect

¢ Moving Pictures Experts Group

7 Intellectual Property

® Electronic Design Automation

® Mean Time To Market

'® Non-Recurring Engineering



Their goal is to implement hardware accelerator boards that speed up the computations on
a personal computer. They use a C-style language to specify the algorithm and a compiler
that compiles it to an intermediate form and finally to a form suitable to be downloaded
into the FPGAs on the board. Once the FPGAs are configured the board can execute at a
much faster speed and the speed-up gained is much more than the software only
implementation of the algorithm. It also has the flexibility of the software; i.e., one can
change the algorithm and download a new one into the board and use the system for a

different purpose.

FFT Bitstream — ) e % FFT Processor
i =—==p Convolver

— MPEG-2
encoder/decoder

Convolution Bitstream ==
MPEG-2 encode/decode =

Ritstream

Figure I. A reconfigurable board.

One can also achieve a higher performance by parallel implementation of
algorithms on an FPGA or dedicated logic than implementing it on a general purpose DSP
processor. This is true if one can convert a floating point algorithm to its fixed-point
counterpart with reasonable resolution, FPGAs could have advantages over general
purpose DSP processors. Otherwise floating-point operations are better done on floating-
point DSP processors. Currently, the DSP processors have a few (usually one or two)
built-in multiplier-accumulator units that are the essential part of most digital signal

processing algorithms. New breeds of architectures from Texas Instruments, Analog



Devices. Lucent Technologies and Motorola are using VLIW'! processors with multiple
data pipelines to improve the performance and throughput of the processor for these

applications.

Most signal processing applications, especially those in the field of image
processing, need to access large amounts of data that are normally stored in RAM. The
way in which this access is done highly affects the final architecture. Also the way one sets
the constraints on the synthesis tool affects the performance and area of the final
architecture obtained. The goal is to increase the memory bandwidth thus increasing the
performance of the system, but this may add to the total area, which may not be very
desirable in all applications. Therefore there is a trade-off between the area and the
performance of the system. The area/performance factors also affect the final power

consumption of the system.

The purpose of this work is to study a system architecture with multiple memory
blocks that can be accessed simultaneously by the processing kernel, which will run the
algorithm. These memory blocks allow the exploitation of parallelism that may increase
the throughput of the system. Adding more memory blocks and more parallel data paths
may not be optimal for different applications. More parallelism in an algorithm also puts
constraints on the memory subsystem. One has to provide more data in parallel for

alleviating the bottlenecks and not to starve the pipelines of the computing engine.

" Very Large Instruction Word



1.1. Motivation
High-level architectural synthesis tools have come a long way and have tackled

different aspects of a design. There have been many studies on synthesizing and
automating the generation of optimal data paths and control logic to execute a specific
algorithm. In recent years, with advances in communications technology and the advent of
complex DSP systems, architectural transformations and enhancements have become more
important than ever. These optimizations tend to ignore the effects of auxiliary memory
used in these algorithms. The way the variables are stored in memory and how they are
accessed during the execution of the algorithm can dictate how the control structures
work and can also affect the data path itself. The million gate era for FPGAs has arrived
and as more and more functionality and architectural improvements appear in new FPGAs,
the dream of millions of gates SOC™ becomes a reality. But without proper tools and
knowledge of the algorithm and different architectures, these devices may not be utilized
as efficiently as possible. Architectural decisions and enhancement techniques are equally
important to both FPGA and ASIC designs, but they are more important for ASIC flow

with its associated NRE cost and time spent during the design.

This work emphasizes the importance of paying attention to the memory
subsystem during architectural synthesis and enhancements that can be achieved by proper
selection of the number of memory banks and scheduling of the read/write operations.

Traditional techniques are reviewed and different views on the subject are explored.

This study tries to find answers, techniques, formulations, heuristics and arrive at a

novel architecture for a multiple memory system. The main issues are choosing the right



number of memory banks for a specific algorithm, correct schedule for the memory

transactions and sketching the final design.

The techniques presented will assist in arriving at a better architecture with
multiple memory banks that can be used for running different DSP algorithms. The
architecture presented is simple yet effective. Later chapters will show this simplicity and

how it makes a design based on this architecture to run much faster than others.

1.2. Outline
Chapter 2 starts with explaining the basics of high-level synthesis, especially

architectural synthesis. The fundamental processes involved in arriving at an optimal
architecture that can be used to run a variety of DSP algorithms are explained. The
methods described are independent of the target technology used, whether it be ASIC or

FPGA. The emphasis of the following chapters would be on FPGAs.

Chapter 3 concentrates on discussing different methods and issues found in papers
dealing with architectural synthesis of algorithms that use memory to carry out their task.
After showing different architectural transformations, a generic architecture for running
DSP algorithms is proposed. A method to find the maximum pipeline level for various
accesses to the scratch-pad (temporary) memory used for storage of intermediate and final
variables is presented. This chapter ends by showing the effects of retiming and pipelining
on the variable life times and thus the memory used. A schedule for an FFT algorithm will

also be shown.

12 System On a Chip



In chapter 4 a novel approach for finding the optimum number of memory banks
for a specific algorithm is presented. First, an exhaustive search scheme that has very big
run times is shown, and then the same problem is formulated using the Integer Linear
Programming. From this chapter on, the FFT example algorithm is used throughout the

work.

Chapter 5 goes over different techniques in generating addresses for a specific

algorithm and finally shows a method to build a hardware address generator.

Chapter 6 uses the methods developed in the previous chapters to implement an

FFT hardware engine.

Chapter 7 presents the detailed VHDL design of a complex FFT and shows the
design challenges and issues. Different aspects of VHDL design of the data path and

control logic for this optimized DSP algorithm is shown.

Chapter 8 gives future directions and brings up issues to be resolved in dealing

with memory in architectural synthesis.



Chapter 2

2. High-Level Synthesis and FPGA design Flow

There are many steps involved in the high-level synthesis of architectures [8].
Followed by the architectural synthesis is the actual logic synthesis or silicon compilation.
The results of architectural synthesis affects the outcome of the final design after logic
synthesis; i.e., the design decisions made and tradeoffs used in choosing the architecture

changes the area/speed grades of the result.

Nowadays many synthesis and EDA software companies’ attentions are focused on
making synthesis tools more aware of and capable of making architectural decisions to

improve overall system performance, power and area.

2.1. Electronic Design Automation and Synthesis
The electronic industry is a very fast, dynamic filed that is also very competitive.

To reduce the amount of time spent designing a system, design automation and synthesis
are introduced. Electronic design automation deals with making most of the design steps
automatic and faster to complete. It covers all aspects of the design from the design entry
to implementation and finally design verification. Design automation allows the designer to
try out different designs and come up with a good trade-off in the shortest amount of time.
This lets the designer to arrive at the most optimum design needed for a specific

application.



Design entry could be schematic, block diagram, state diagram and flow charts or
other means of specifying the system. Design implementation EDA tools cover the
synthesis, partitioning, placement and routing of the design. Examples of the design

verification tools are high-level and gate-level simulators and automatic test bench

gencrators.

Synthesis is the action of arriving at a circuit at the finest grain after specifying the

system at a higher level of abstraction. Synthesis is usually divided in three different

categories:

1. High-level synthesis

N

. Logic Synthesis

W

. Layout and physical synthesis

The high-level synthesis transforms the specification of a design, which is at the
highest level and specifies the behavior of the system, to a structural netlist of
interconnected components and RTL logic. This is explained in more detail in the next

section.

Logic synthesis deals with converting the structural RTL specification of the
design to an optimal (simplified) combinatorial and sequential logic mapped to a specific

technology and cell library. Logic synthesis is not covered in this work (refer to [10]).

Layout and physical synthesis converts the mapped structural design into the exact
physical geometry or layout of the design. This includes the actual placement and routing

of the components.



2.2. Operations Done in High-Level Synthesis of Architectures
The first step in high-level synthesis is the compilation of the source description,

whether it be an HDL or other high-level representation of an algorithm to an intermediate
format. This intermediate format is transformed into a more suitable representation for
high-level synthesis that is usually a Control Data Flow Graph (CDFG). A Control Data
Flow Graph is referred to two directed graphs called a Control Flow Graph (CFG) and a
Data Flow Graph (DFG). A CFG contains the flow of control in the original specification
with nodes being the operation and the edges being the dependencies of operations. The
DFG contains the flow of information from one operational unit to the other. These

operations usually encompass compiler-like and hardware-specific transformations.

Some of the transformations at this stage include: converting more complex
operations to simpler ones with the same functionality, increasing the parallelism in the

operations, and reducing the number of data flow levels.

After a CDFG is extracted from the high-level language specification, from this

CDFG, the control circuitry and the data path are derived.

The main tasks in high-level synthesis that should be done to derive an architecture
from a system specifications are: Allocation, Binding and Scheduling. After these three
steps the design is written out in a structural RTL language and passed to logic synthesis.

The three main steps in high-level synthesis are explained briefly.

Allocation is the assignment of different functional elements for the system,
including Functional Units (FU) - adders, multipliers, ALUs, etc.- Registers, Register

Files, RAMs, Interconnections, Busses, MUXes, and Bus Drivers. The selection of
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different functional units is based on the constrains passed to the synthesis tool. The
allocation phase tries to select operations that seem to satisfy the timing constraint by

looking at the DFG.

Binding is the assignment of operations to functional units, data transfers to
busses, multiplexers and interconnections, variables to registers, register files and memory
blocks, addresses to memory locations. Binding tries to optimize the sharing of hardware
resources. Operations done at different cycles can share the same functional unit, variables
that are not alive (needed) at the same time can share the same register or memory
location, and data transfers that do not occur at the same time can share the same path

(bus or muitiplexer).

Scheduling is the assignment of data transfers, lifetimes, operations to clock cycles
in a synchronous system. Scheduling tries to optimize the number of clock cycles needed
to finish the algorithm given the constraint on the hardware resources and the number of
clock cycles. This operation takes into account the control relationships specified in the
CFG and also should consider the data dependencies specified in the DFG. Scheduling

also deals with chaining of operations and multi-cycle operations.

These three tasks and their relationships is shown in Figure 2.
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Allocation
Functional Units (FU)
Registers, Register Files, RAMs
Interconnections, Busses
Muxes, Bus Drivers
Binding Scheduling
Operations — FUs Data Transfers, Life Times
Data - Busses, and Operations
Transfers Interconnections -—
Variables —  Registers, Memory 1
Blocks
Addresses —  Memory Locations Clock Cycles

Figure 2. Tasks in a high-level synthesis tool

In a synthesis tool, these tasks are done to obtain an architecture from
specification. The starting point for these tasks is usually Allocation. But there is a cycle
among these three tasks that should be done a number of times to arrive at the desirable
architecture based on the constraints put on the synthesis tool by user specification. Some
synthesis tools break this cycle at some point or even do two or three of theses tasks
together. The complexity of the tool increases as these tasks are done together, but the
architecture obtained is closer to the optimal architecture because doing the processes

together gives global visibility of the system to the tool.
There are different scheduling techniques. A few of them are:

1. First come, first served (FCFS) scheduling. This looks only at data dependencies

and tries to schedule operations from the first to the last one whichever come first.

2. ASAP (as soon as possible) scheduling, by which, operations are scheduled as

early as possible considering their dependencies.



3. ALAP (as late as possible) scheduling, by which, operations are scheduled at the

latest possible maximum time allowed.

4. Critical path scheduling, also called mobility scheduling, schedules operations
based on their mobilities. Mobility of an operation is the difference between its ALAP and

ASAP schedule.

5. Lifetime scheduling tries to find a good schedule by minimizing the number of

registers.

Other scheduling techniques are “Force Directed Scheduling”, “List Scheduling”,

and “‘Look-ahead Scheduling”.

In this study, work on binding variables to memory blocks and addresses to
memory locations are undertaken. Other tasks are also reviewed as the final architecture is

derived.

2.3. FPGA Design Flow
To arrive at the final programming bitstream for the FPGAs, a designer starts by

system specification and then capturing the design with a design entry tool. Design entry
can be pure schematics, pure HDL' code (VHDL'/Verilog), or mixed schematics and
HDL. Following this is a simulation step, in which the functionality of the design is
verified. After the verification step, is the actual synthesis of the HDL code and design
optimization. The input to this step is the designer’s timing and area constraints. The first

step in the design implementation, is the HDL synthesis and mapping the design to the

> Hardware Description Language
¥ VHSIC (Very High-Speed Integrated Circuit) Hardware Description Language
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target device (technology mapping). Then the mapped design is flattened and all the
elements are placed considering the timing and placement constraints. After placement, is
the automatic constraint-driven routing of the nets in the design and their interconnects. At

the end of this step, the configuration bitstream for the FPGA is produced.

To verify the functionality at this stage, one must back-annotate the actual delays
from the placed and routed design back to the flattened HDL netlist and do a timing or
back-annotated simulation. The result of this simulation is to be compared with the result
of the functional simulation. If the two results are within the allowable range of design

specifications, the design cycle is complete. The complete flow is shown in Figure 3.

The ASIC design flow is very similar to the FPGA flow with a few more additional
steps. There could be an RTL floor-planning before the actual synthesis to improve the
area/performance. After the synthesis, which takes user constraints and the target
technology’s cell libraries, is the final floor planning and placement of the modules. For
better design testability, a DFT" scan chain insertion step is done in which the [EEE 1149

boundary scan chain logic is inserted at the I/O boundaries.

An Automatic Test Pattern Generator (ATPG) module and a signature analyzer

module could also be placed on chip to do self test and sanity check on the circuit.

'* Design For Testability
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Figure 3. FPGA design flow

There could be an additional power optimization of the system in which some
techniques are used to reduce the toggling rate of flip-flops thus reducing the power

consumption of the system.
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After the final routing is the delay extraction and generation of the back-annotated
netlist that is usually in the EDIF'® format or VHDL/Verilog netlist with associated SDF'".
A comprehensive simulation is done at this stage and if there was a problem at this stage,
the preceding steps could be repeated. After the final confirmation that the design satisfies
the design specifications, the masks are generated and the chip layout is done. The masks

are sent to the fabrication facilities where the chip is fabricated and packaged.

' Electronic Design Interchange Format

'7 Standard Delay Format
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Chapter 3

3. Handling Memory in Synthesis of Architectures

In this chapter, different architectural transformations related to the synthesis are
explored and then different memory access (loop) transformations are presented. Then
some of the published techniques in dealing with synthesis of DSP algorithms that make

use of memory as temporary storage are reviewed.

3.1. Architectural Transformations
There are very simple architectural transformations that can improve area and/or

performance of a specific algorithm. Some of these transformations are results from

compiler technology [9] applied to hardware synthesis [10], [11], [12].

zk:'_@_' [A* 2" ={A <<k] k
A A
""" A[«AB)C)D][(AB)(CD)]A;
B B G—
S > A
""" BuayN  (ABc@sOl=Ac®O]

@" B

Figure 4. Architectural transformations.
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As can be seen in Figure 4, one can see three different simple transformations,
which improve the overall system area/performance by reducing the number of operational

units and their associated delay.

The first transformation is the use of other functionally equivalent, more
area/speed efficient operational units in place of more costly ones. An example would be
using shifts instead of multiplication by a constant power of two number. This improves

both area, speed and power consumption of the system.

The second transformation is using the association property of operations to merge

and group multiple operations. This improves delay and therefore system performance.

The third transformation is distribution or what is usually called resource-sharing.
And that is to factor and use the common part of multiple operations. This improves the

resulting area and power consumption.

3.2. Memory and Loop Transformations

In section 3.5, the reader will see how arrangement of variables in memory
(storage order) and accesses to those variables (access order) can affect the pipeline length
and the variable lifetimes in memory. There are other ways to reduce the memory traffic

(reads and/or writes) by using loop transformations.
One can observe the following different methods mentioned in [13]:

1. Loop-invariant removal tries to move the parts of the loop body that do not

depend on the loop index to outside of the loop body.
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2. Load-after-load optimization removes the second load from the loop body if the
second access is to the same location as the first and the sequence of operations have not

changed the value of the variable accessed.

3. Load-after-store optimization removes load if there were no other store
operations to the same memory location and the internal variable is used instead of another

memory access.

To improve the performance of computer systems and algorithms, one can increase
the number of memory banks that provide data to a specific architecture and keep its
internal pipelines fully utilized. Usually data interleaving is used for the storage of
information in these multiple memory, parallel systems. But this may result in memory
access contention and pipeline stalls. There are also other dynamic methods to increasing
the performance of multiple memory, parallel systems by using dynamic storage schemes

and address transformations [14], [15], [16].

3.3. Studying Different Methods
In this study, different approaches taken in different areas of computing

applications have been looked at. One such approach is in the implementation of data
structures and memory management strategy using window analysis in the Cathedral-II
system [17]. It analyzes the algorithm and for a given number of memory ports reduces the
total number of storage locations needed to a near minimum. First, the minimum number
of locations that store each data structure separately in chunks of contiguous RAM
locations, called pages, is found. Next, pages can share the same physical memory

locations if their contents is not alive simultaneously. It was also observed that storage
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order and access order of a data structure in memory, changes the amount of storage
requirements. In this system, which is based on lifetime analysis, variables with disjoint
lifetimes can share the same memory location thus reducing the memory size needed. The
“window of an array” is that section of the array that should be alive in memory in order
for the algorithm to run properly. With the change in the storage and access order of an
array the window of the array changes and thus changing the amount of local memory

required in the architecture.

Another approach taken, is using loop and control flow transformations using
polyhedral dependence graphs (PDG) [18] and finding an ordering vector for optimal
memory access having the bandwidth constraint as the maximum number of simultaneous
memory accesses at any time point. Their approach is that all the intermediate variables
that are sure to be consumed directly after their production do not have to be stored in
background memory. One important point is that memory size is related to the maximum
number of signal instances to be stored at any point of time for a given ordering of

operations.

Another interesting paper is in the field of high-level-language compilers for
paralle]l machines and the subject of loop transformations to increase parallelism. In this
paper [19], a number of transformations are proposed to increase parallelism. The object
of this paper is parallel computers that have fixed architecture and is different from what

has to be done for this work; i.e.; compilation for an architecture that is unknown.

In another paper (20}, a technique using Mathematics of Arrays and the y (PSI)

calculus is used to generate addresses for data transfers that require less data transfers



than more traditional algorithms. But again this is targeted for general purpose processors
with fixed architectures and single memory port that is not suitable for the purpose of this

work.

In [21] a coprocessor engine using FPGAs for a general purpose DSP processor is
shown that helps in the computation of a 3x3 convolution on a 2-D image data. They
extract the window, or the active variables needed to compute one 3x3 convolution sum,
from the algorithm and with the aid of FIFOs they supply enough data for the architecture

implemented in the FPGA to compute the rest of the convolution.

It is known that how the data is stored in memory and how it is accessed can affect
the memory requirements of the final architecture. In [22], [23], [24], it is shown that
arranging the data in multiple memory banks for a parallel machine can change the
throughput of the system. So there is a trade-off in the number of memory ports (blocks)

and the amount of local storage inside an architecture for different algorithms.

3.4. Architecture Proposed for Executing DSP Algorithms
From the study of all these papers the following design is proposed (Figure 5) that

is suitable to implement a number of different DSP algorithms with different degrees of
parallelism. It is assumed that the algorithm is originally specified with some kind of loop
structure and the inner core of the loop is specified as a signal flow graph. The memory
blocks could be implemented as discrete memory or as embedded memories inside FPGA,

which are abundant in today’s FPGA architectures.
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Figure 5. Proposed architecture

To illustrate this, an 8-point, radix 2, in-place FFT'® based on this design is chosen
for implementation (refer to {45] for detailed explanation of FFT). In this multiple port
memory design, it is desirable to be able to pass data from each of memory blocks to the
inputs of the data path kernel, which is implementing the inner core of the loop of the
signal flow graph. And it should also be possible to store the outputs of the data path to
any or all of the memory blocks. This is the reason for the memory port switch-box unit at
the inputs and outputs of the data path to the memory blocks. This is derived from the fact
that in many of the signal flow graph representation of algorithms, if the signal flow graph
is repetitive (composed of similar operations), one can fold the graph and only implement
the repetitive part and forward the proper data to the inputs of this folded graph. This can

be seen in the signal flow graph of the FFT example; as in Figure 6.

'8 Fast Fourier Transform
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Figure 6. 8-point, radix 2, in-place FFT (Cooley-Tukey)
Assuming, all the memory accesses have been assigned to the variables that should

be stored in memory, with a specific computation order, one should schedule the reads and

writes of these variables and also bind them to a specific memory port.

To do this, the first task is to assume a computation order. For this purpose

consider the fully folded graph of the FFT example; as in Figure 7.
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Figure 7. A number of folded implementations of the FFT

The computation order considered; having Figure 6 in mind, is a column-wise scan
of the signal flow graph; i.e., the top-left butterfly is computed first, then the second top-
left butterfly, then the third-top, and so on. For each step of the computation an iteration
count is assigned; i.e., the first butterfly is assigned O, the second I, and so on. To
continue the process, allocation, scheduling, and binding for the butterfly graph is done
and the number of cycles needed to finish the operations is found. Then considering the
architecture proposed in Figure 5, one should do the following operations one after
another. In the first iteration of the loop, the necessary variables are supplied to the correct
inputs of the butterfly (the data-path core in Figure 5), then it is time for the computation
cycle of the butterfly itself, and then the output results are written to one or a number of

memory blocks.

The memory switch-box is responsible to route the correct input to the data path

and the result to each memory block. These series of operations can be seen in Figure 8.
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Figure 8. Sequence of operations in execution of the graph

The write operations of each iteration can be done with the read operations of the
next iteration assuming there is no conflict in the memory organization; i.e.. there can be
simultaneous reads and writes, and also the variable produced is only consumed at least
two iterations apart. If the variable is going to be used in the next iteration it can be fed
back to the graph with a single delay or a recursive edge instead of being stored on the

external memory to the data-path.

If the inner core graph cycle time is comparably longer than the cycle times of read
and write operations, the graph computation of the third iteration can also be done in
parallel with the read of the second, and write of the first iteration. The resulting order of

operations can be seen in Figure 9.
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Figure 9. Sequence of operations, showing the parallelism achieved.



3.5. Extracting the Maximum Pipeline Level
Now the weights of each edge of the folded graph are extracted. Weights are the

delays that should be put at the output of one iteration so that the correct value is passed
to the iteration that needs this value. For example, if a value is produced at iteration 5 and
is used at iteration 9, there should be a delay of 3 (Z7) at the output or an edge with
weight 3. Figure 10 shows different order of operations needed to compute the FFT in
Figure 6. In all cases the precedence of operations should be preserved to guarantee the
correct computation. These different orderings result in different number of delays needed
for each variable, in another word, there will be less number of memory locations needed

to keep the variables in between the iterations depending on this order.

With the labeling of the edges and inputs of the butterfly in Figure 9, the following
tables tabulate the number of Z's needed on each edge based on different computation
order. Basically, if the delay is more than one, the variable is stored in memory, otherwise
it is saved in a register that is represented by a recursive edge. These registers allow

further pipelining of the core graph and data-path, thus reducing the cycle time.

10 11 Input Set no. 00 O1 Qutput Set no.
x[0] x[4] IS1 X[0} X[4] 0S1
x[2] x[6]) IS2 X[1] X[5] 0S2
x[1] x[5] IS3 X[2] X[6]) 0OS3
x(3] x[7] 1S4 X[3] X[7] 084

Table 1. The set of input/output connections to the inputs & outputs the butterfly

First delays for column-wise scan is extracted, and then the same is done for other

types of scan.
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Figure 10. Different scan orders for the sample FFT graph
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By studying these scan orders it is possible to further pipeline the data-path. If the
number of Z's are more than one in all iterations, the number of Z's can be reduced by
one and that Z"' be moved inside the data-path to use it as pipeline register. This will
drastically decrease the cycle time of the core data-path and the throughput of the system

is increased by paralleling more operations.

-2 —
,, =1 cycle @5 2 cycles

Figure 1. Retiming and pipelining illustrated

Now consider the data-path core shown in Figure 11 with two of the recursive
edges with weights 2 and 3; shown as black-filled boxes and also assurne that it is possible

to move in as many Z's. By moving the Z's inside the data-path, the execution time of the



core is decreased. But it is not possible to move all of the Z's in, otherwise the iterations’
interdependency will be lost and the correct algorithm would not be implemented. This is
because this data path is derived by folding the original signal flow graph. The only way to
preserve the algorithm correctness is only to move in one less than the minimum number

of Z''s at each iteration; i.e., to use the minimum of the weights at each column.

3.6. Scheduling the Graph
Next the FFT example is investigated and the reads and the writes to the external

memory for the first type of scan (column-wise) shown in Figure 10 is extracted. With the
previous discussions in mind, only one Z"' can be moved from each edge in and used as
pipeline register inside the data path. Having done this, the operations (reads and writes as
in Figure 12) can be scheduled. It is assumed that, it is possible to have two simultaneous
reads and two simultaneous writes; either by having a dual-port memory architecture or by

having two memory subsystems.

This further reduces the cycle time of the execution of the whole algorithm. But if
this is much too expensive, the reads and writes could be scheduled sequentially one after

another.
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Figure 12. Scheduled FFT with two-stage pipelined butterfly core and variable lifetimes

From this discussion, it can be seen that pipelining the core shortens the total
execution cycle of the algorithm. Higher levels of pipelining are also possible by
introducing what is called a no-op node to the graph on edges that have the least number
of Z''s. By introducing new nodes into the graph, the number of Z's that can be moved
inside the core to be used as pipelined registers could be increased. Higher levels of
pipelining allow to remove the dependency among input, output operations and also the
core. This simplifies the task of memory bank assignment because it is no longer needed to
know the schedule of the operations in the graph and all the operations, including read and

write to the memory, having the mobility of the whole execution cycle.



Chapter 4

4. Memory Bank Assignment

In this chapter, explanation is given on how to assign a memory bank number to
the edges of the graph so that the memory bank usage is balanced and ailso on how to
simplify and reduce the logic needed in the controller of the final architecture. The
example graph used in this chapter is a radix-4 16-point FFT (refer to {45] for detailed
explanation of FFT), assuming having only two memory banks. The graph is shown in

Figure 13.

Iteration
number

Figure 13. Radix-4 16-point FFT
An in-place storage scheme is assumed; i.e., the final result of the FFT is assumed

to be stored in the same place as the original input data, but the difference with the in-

place storage is that the intermediate results will not be stored in the same place as the
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input data. Therefore, in the graph of Figure 13 the output edges are assumed to be
wrapped around and connected to the corresponding inputs of the graph. The task is
divided in two parts. One is the resource balancing, which in this case is the balancing of
the memory banks usage. The second is to simplify the controller that is going to be
mapped into a single or multiple FPGA system along with the data path itself. One way to
simplify the controller is to reduce the number of control words used in the controller. In
most of the signal processing algorithms, especially those with large storage needs and
image processing applications, one can find a regularity in the usage of memory. If one can
exploit and take advantage of this regularity in the access of the memory banks, the

controller words that address the memory could be reduced substantially.

4.1. Exhaustive Search of the Solution Space

In the first attempt in the memory bank assignments, an exhaustive search routine
was developed to do these two tasks at the same time. The assumption is that there are
two memory banks and a memory bank should be assigned to each edge in the graph. With
two memory banks, a binary variable is used to distinguish between the two; i.e., a ‘0’
means the first memory bank and a ‘1’ means the second memory bank. There are 32
edges in the graph and they are numbered from 0 to 31, and a 32-bit variable is used for
the assignment of all the edges and each bit in this number represents an edge in the graph.
For example a value of 0x33CC33CC means edge_0 is assigned to bank_0, edge_1 to
bank_0, edge_2 to bank_1I, and so on. It is assumed that the final architecture will have
one processing core for the 4-point FFT, four inputs and four outputs. The binary number
assigned to the edges of the graph make a 4-bit binary number at the input, and a 4-bit

binary number at the output of this 4-point FFT at each iteration of the algorithm. This is
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called a symbol, a write symbol for the output number and a read symbol for the input

number.

WriteSymbol ¢ ¢ i i ¢ i i i i it il pead Symbel
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Figure 14. Pictorial representation of a symbol

The algorithm tries to assign symbols (in this case from 0x0000 to Ox1111) to the
reads and the writes of each iteration, so that, first the symbol assigned is balanced in the
number of Os and 1s it has (this balances the memory bank usage) and second, the number

of symbols for reads and those for the writes are minimized. The cost function used is:

(number _of _read _ symbols) + (number_of _write_ symbols) +
Total _number _of _symbols

Y (Count_of _ symbol)i * (Cost_of _symbol)i

=0

The exhaustive search starts counting from 0x00000000 to OxFFFFFFFF and at
each step checks the cost function and accepts the assignment only if the current cost is

less than the pervious calculated cost.
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4.1.1. Implementation Details
The algorithm is implemented in C and is given in Appendix A. At the beginning of

the program, two arrays, a source edge and a destination edge with size of the number of
edges in the graph, are declared and initialized with the node number that the edge
connects to. Another array is initialized with the input and output edges that connect to a
node. Two other structures are declared for an edge and a node. The edge has three fields,
source node number, destination node number and the bank number assigned to it. A node

has two arrays of input edge numbers and output edge numbers.

A symbol is defined to have a cost, a count of how many times it has been used
and whether it has been used or not. Because each node has four input and four outputs,
there are sixteen possible symbols whose costs are defined in the symbol_costs array. In
the symbol’s binary representation, if the number of ones and zeros are balanced (two
each), the symbol cost is 0. If there are 3 ones/zeros and 1 zero/one in the symbol, the

symbol cost is 1 and if there are 4 ones/zeros in the symbol, the symbol cost is 2.

There are 32 edges in the sample graph and a 32-bit number is used to represent all
the memory assignments for the edges. A zero means that bank ‘0’ is assigned to that edge
and a ‘1’ means that bank 1 is assigned to that edge. The algorithm starts by initializing the
edges and nodes of the graph and then initializes the symbol table. Then the exhaustive
search begins that counts from 0x00000000 to OxFFFFFFFF and at each iteration checks
the current cost. If the current cost is less than the latest calculated cost, the program
reports the last cost, the current cost, the number of different words used and the current

assignment.



4.1.2. Results from the Exhaustive Search
This exhaustive search was very slow and time-consuming, so a new technique

based on the integer linear programming (ILP) formulation and using the GAMS solver

was used and will be shown later. The results of the assignments for radix-4, 16-point FFT

and two memory banks summarized in the following table.

Read Symbols | Write Symbols Cost of Read Cost of Write Total Cost
(Hex) (Hex) symbols Symbols
3.C 3,C 0 0 4

Table 2. Results for radix-4, 16-point FFT and two memory banks (exhaustive search).

4.2. Formulating the Problem in ILP
By formulating the problem in ILP, the search space is basically limited from all the

infeasible solutions to some that may be a solution but not necessarily the best one. Search
space is all the possible assignments of memory banks to the edges. In the exhaustive
search, there were no means to isolate those assignments that will cost too much, long
before checking all the assignments. The checking routine had also too much overhead.
Once a formulation is derived, the ILP solver does a branch and bound through the
bounded search space and generates a cost. The constraints written, try to minimize this
cost and arrive at an optimal solution. Depending on how the constraints are written, the

solver may reach the absolute best or a local optimum answer.

Now a detailed explanation of this formulation is given. In this formulation, four
static sets are used. I is the set of iteration indices or the nodes that are executed at each
step, in this case from 0 to 7. S is the set of symbols or the different assignments to the
edges, in this case from O to 15. E is the set of edges, the edges are numbered from O to

31. The inner edges are numbered first from the output of node 0. And B is the input or
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output number, a number is assigned to each input port or output port to the core; i.e., 0
to first input, 1 for the second input and so on. The same thing is true for the outputs. So

in this case B is from 0 to 3, because there are four inputs and four outputs.

There are sets that define the edges of the graph using the writer’s iteration
number (WI), reader’s iteration number (RI), writer’s output (bit) number (BW), and the
reader’s input (bit) number (BR). There is a dynamic set called EDGE_EXTS(E, L, J, BI,
BJ) that has a member for each edge defined in the graph, this dynamic set is used in the
constraints. Two binary variables W_X(I, S) and R_X(, S) are defined. Every ‘I’
assigned to W_X means symbol ‘S’ is assigned to the write at iteration ‘I’, and a 'V’

assigned to R_X means symbol ‘S’ is assigned to the read at iteration ‘I’

As can be seen in Table 3 and Table 4, only one symbol can be assigned to each
iteration whether it be a read operation or a write operation. From this, the first two

constraints can be written, as will be seen later (constraints 1 and 2).

WX(LS) Inns|oj1 2 (3141 5}161L17 8 ]9 10 11 12 i3 14 15
0 1
1 1
2 1
3 I
4 1
5 1
6 1
7 1

Table 3. Sample assignments of symbols to iterations and nodes " outputs
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Table 4. Sample assignments of symbols to iterations and nodes’ inputs

The input and output symbols that are used are reflected in the W_SYM and
R_SYM binary variables as a ‘1’ (constraints 3a, 3b, 4a and 4b). If the symbol is not
assigned (never used), the associated W_SYM or R_SYM will be ‘0’. Using these two
variables, the total number of read and write symbols used (variables W_SYMS and
R_SYSMS), that contribute to the final cost function (constraints 5 and 6) can be counted.
Assigned to each symbol is a corresponding cost due to its distance from the average of a
balanced memory access; i.e., for a two-bank memory system, writing or reading four
variables into memory should send two variables to one bank and the other two to the
other bank. One simplification to the problem is made by considering the nature of an FFT
algorithm. It is known that one always does read or write complex variables having a real
part and an imaginary part. Because these two parts are always read and written at the
same time, they can be overlapped or merged, assuming only one single variable is read or

written. This reduces the size of the symbols used.

The cost of every symbol is calculated and set as a constant parameter array, called
SYM_COST. Constraints 7 and 8 compute the total cost of write (W_COST) and read

symbols (R_COST).
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! JZ W_X(I[,S)=1;V1I

S

[ZS, R_X(I,S)=1:V1I

B [Lyax *W_SYM(S)- S W_X(I,5)20;VS
4

3b
D W_X(,5)-W_SYM(S5)20,VS
4a I

w | | Taax *R_SYM(S)—ZI, R_X(1,5)20;VS

D R_X(I,S)—R_SYM(S)20;VS
I

-

W_SYMS =3 W_SYM(S)
R_SYMS = i R_SYM(S)
S

7 | (W_CoST =23 W_X(.S)*SYM_COST(S)
I
R_COST = Zi R_X(I,S)*SYM_COST(S)
I s

%9 | > [W_X(I,S)* BANK_IS_x(S,BI)]= 3 [R_X(J,5)* BANK_IS_x(S,BJ)]
S L)

iVE,I - J,BI = BJ,x = TotalBanks — 1

10 | Cost =(W_SYMS+W_COST)+ (R_SYMS + R_COST)

Table 5. Constraints used for the 16-point FFT memory bank assignment.

To summarize, constraints 1 and 2 force the assignment of at most one write or
read symbol at each iteration. Constraints 3 to 8 count the total number of symbols and
calculate the cost associated with them. Constraint 9, which is written for every edge,
forces the source and destination of an edge to be assigned to the same memory bank. The
number of constraints of the form of constraint 9 is one less than the number of memory
banks used, in the case of two memory banks, one is enough. For more memory banks this

constraint repeats with the difference that BANK_IS_1 is replaced by BANK_IS_2,




BANK_IS_3 and so on. These Boolean type variables are true (‘1") wherever the

corresponding bank in the symbol’s digit is one, two, and so on.

To calculate the BANK_IS_x(S, B), there is a constant table called BITS(S,B) of
the symbol S in decimal and its equivalent value in base TotalBanks. This is because a
number is assigned to each edge that is from O to TotalBanks-1, which are digits of a
number in base ToralBanks. Table 6 shows how the constant table of BITS(S, B) helps

compute the Boolean BANK_IS_x(S, B).

BITS(S.B) S\B 33 | 239 | 13h) | o3H

0 0 0 0 0 BANK_IS_1(5.1)=TRUE
1 0 0 0 1 BANK_IS_2(5,0)=TRUE
3 0 0 0 2

2 2 2 : 2 BANK_IS_I(6, 1 ) = FALSE
5 1] 0 1 2 BANK_IS_I( 6, 2 ) = FALSE
6 0 0 2 0

27 L 0 ) 0

28 1 0 0 1

29 1 0 0 2

79 3 3 3 T

80 2 2 2 2

Table 6. Base TotalBanks equivalent of symbols ini6-point FFT and 3 memory banks

The total cost is calculated in the formula number 10, and it is the sum of total

number of write symbols, total number of read symbols, total cost of write symbols and
total cost of read symbols. This value should be minimized and this is the objective

function. The ILP solver tries to minimize this and give the best assignment.

The constraints let the solver to reach an answer if it exists. Adding more

constraints makes the solver arrive at an optimal answer in much less amount of time.
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4.2.1. Automatic Generation of the ILP Source for Arbitrary FFT
A C program has been written that generates the ILP source file for an FFT with

arbitrary number of points and radix. The input to the program is the number of points in

the FFT, the FFT’s radix and the number of memory banks.

The program is very helpful when dealing with higher number of points. The first
part of the ILP program is very similar to the exhaustive search algorithm. The graph
needs to be constructed with all the edges and nodes in it. The symbol table and their
associated costs should also be constructed. The program makes writing the ILP program
easier by generating all the source and destination edges and all the necessary data needed

for the ILP formulaton.

Code generators are very popular in software design so it is in the Electronics
Design Automation. One can write a program to generate another program for another
compiler or design tool. This C program did take the hassle off specifying the graph edges

and data in [LP.

4.2.2. Results from the ILP Formulation
The results of the assignments for radix-4, 16-point FFT and two memory banks,

radix-4 16-point FFT and three memory banks, radix-8, 64-point FFT and two memory

banks are summarized in the following tables.

Read Symbols | Write Symbols Cost of Read Cost of Write Total Cost
(Hex) (Hex) symbols Symbols
3,C 3,C 0 0 4

Table 7. Results for radix-4, 16-point FFT and two memory banks.




Read Symbols | Write Symbols Cost of Read Cost of Write Total Cost
(Hex) (Hex) symbols Symbols
4,5.7,A,C, 4,5,7, A, IE, 0 0 16
1D, 33, 3B 30, 37,40
Table 8. Results for radix-4, 16-point FFT and three memory banks.
Read Symbols | Write Symbols Cost of Read Cost of Write Total Cost
(Hex) (Hex) symbols Symbols
17, E8 17, E8 0 0 4

Table 9. Results for radix-8, 64-point FFT and two memory banks.

From these tables it can be seen that, the less the number of read and write

symbols, the less the complexity of the address generators and control logic. It can also be

seen that balancing the memory accesses may be more costly in regards to the total cost

considered here.

The ILP solver reaches the solution in much less time than the exhaustive search.

The ILP formulation and the method proposed are a good start at reaching an algorithmic

method to assigning banks to data flows of an algorithm. Heuristics should be used to do

this at first and then come up with the proper algorithm.

In the next chapter, the process of address assignments to each memory bank is

explained.
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Chapter 5

5. Memory Address Assignment and Generation

In this chapter, a technique to assign addresses to intermediate variables is
discussed and also different techniques to build a hardware-based address generator is
explored. One can find different techniques presented in the literature. Designing a flexible
and efficient address generator is very difficult. The method used may also not be very

useful in generating addresses for different algorithms.

5.1. Address Assignment

There has been many studies on the assignment of memory addresses to variables
(register allocation) in the filed of Computer Science. A number of algorithms have been
developed mostly for use with high-level language compilers. The commonly used
algorithm is the graph coloring [25], [26] and how to find the minimum number of colors
needed to properly color a graph. This minimal number of colors is also called the

chromatic number of the graph.

Basically, coloring of a given graph G = (V, E) with K colors, where V is the set
of vertices, E is the set of edges in the graph and K <1V, is to find function f: V — (1, 2,
..., K} such that f(u) # f(v) where {u, v) € E. It can be said that coloring of a graph is to
assign a color to each of its nodes so that the nodes connected by an edge have different

colors.
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Register allocation is done by first creating a register interference graph, which is
a graph that has V nodes that represent the variables and there would be an edge between
two variables that are alive at the same time during the computation. These nodes are said
to interfere with each other; thus the name interference graph. After this step, for a limited

number of K registers, one should find a K-colorable graph.

The graph-coloring algorithm [27] belongs to the NP-complete set of problems
that may result in an impractical amount of computation that is needed to find out the
number of colors. For this reason and the fact that for fairly complex DSP algorithms with
large number of data stored in memory, the graph coloring algorithm would be unrealistic
to be used for address assignments for large number of registers, other methods should be
used. The graph-coloring algorithm is mostly used in high-level language compilers for
CPU architectures with small number of registers or for register assignment in synthesis of

an architecture with few number of registers.

For different algorithms, one can exploit the regularity of the access and find a
good address assignment. As was seen before, the access scheme could also affect the final
architecture and the maximum number of pipeline levels. There is an efficient storage
scheme proposed in [15] for assignment of addresses for a radix 2 FFT. A better storage

scheme will be seen later that does not have the limitations of this assignment.

5.2. Address Generation
One of the challenging tasks after register allocation and memory address

assignment, is the address generation. Once all the addresses of source, intermediate and



destination variables are known, one can come up with different schemes to generate those

addresses. There are two schemes for generating addresses for a specific algorithm.

5.2.1. Software-based Address Generation
In general, loop constructs or dedicated constant lookup tables can be used to

generate the addresses for a specific algorithm. A dedicated microcode sequencer or small
microcontroller implemented in hardware could execute the program to generate the
addresses. This program could be hard coded into a ROM and even for flexibility in
rewritable memory. The advantage of this scheme is that the program that generates the
addresses could be modified to generate a new set of addresses for implementing another
algorithm. The disadvantage is that special consideration is to be made in designing a

dedicated microcontroller circuit.

............

- Addr : Read-only :
Microcontroller Program §f = : or :
(microsequencer) [ 2212 Memory f° T trreeeee-e rewritable
Em——
| > | 0O ddr
‘ utput Address
Dedicated Port

Figure 15. Software-based (microcontroller) address generator

Another use of software is for analyzing the addresses and finding a regular pattern
and to exploit this pattern to designing a much simpler and yet workable address generator

in hardware using dedicated logic.



5.2.2. Hardware-based Address Generation
Generating addresses for a specific algorithm is very important and could become a

bottleneck in execution of the algorithm. There have been many studies to come up with a
scheme to generate an address of a variable in memory on the fly. For specific algorithms
one can find simple methods to generating these addresses. The commonly used method is
using look-up tables, which is very costly on the memory requirements and is mostly used

in cases were the number of addresses are minimal.

Another method is the use of dedicated computing hardware to generate the
addresses on the fly. One can construct an address generator by using counters plus
additional adder/subtractor, bit-shufflers, some logic and/or look-up tables. There have

been many studies in designing a GAG" ([28], [29]. [30], [31)).

For many applications, one can exploit the access regularity of a specific algorithm,
by using some transformations and changing the access order of the algorithm to take
advantage of a much simpler address generators. In one study [32], by having all the
addresses of the algorithm in question, one can generate them by using simple counter, bit

shuffling and some logic and/or look-up table if the number of addresses is a power of 2.

Counter Bit Shuffler
N
————» ————>
——————> ——
=
" Out
put Address
-;D Look-up Table :::
> > or >
CEJ—. [—— _a|Dedicated Logic|———® |

¥ GAC = Generic Address Generator



Figure 16. Simple address generator

Figure 16 shows this simple address generator obtained by using this algorithm.

The algorithm starts with a list of addresses (whose total number is a power of two) to

generate. It then starts with the first bit of these addresses and follows these steps:

(3]

. If the list is all zeros or all ones, the process fer this bit is done and this bit is

stuck and ‘0’ or ‘1’ whichever applies.

. Spilit this list in half.

. If the two halves are equal, go to step 2 otherwise continue.

If the two halves are not logical inverse of each other, the sequence is a semi-

random sequence and is dealt separately. Otherwise continue.

. If the two halves are equal, then if they are all ‘1’ the counter bit is directly

connected to the address bit, if it is ‘O’ the counter bit is inverted and connected

to the address bit.

If the two halves are not equal, the counter bit is ExORed with whatever bit is

found by going to step 2 again.

For a semi-random sequence, basically the bits that are ‘1’ should be decoded. The

basic idea is to try to match (decode) the counter bits or a combination of them using

inverters, AND, OR and XOR gates.

This algorithm has been translated to C based on the original paper [32] and is

provided for use with the example design in the next chapter.



Chapter 6

6. Using the Techniques in an Example Design

In this chapter, a demonstration is made of most of the techniques discussed, to
implement a 1024-point complex FFT hardware. First, the architecture to be implemented
is presented, then deeper aspects of the architecture is shown, and finally different modules
used and how to implement them are discussed. The design is completely done in VHDL

and the results of simulation and synthesis is presented later.

6.1. Which FFT Algorithm Implementation to use?
In chapter 3, Figure 6, an implementation of the FFT algorithm called Decimation-

in-frequency that is known as Cooley-Tukey implementation was seen. The FFT is break
down of the DFT® of a finite sequence { x{n] }; 0 < n < N-1 into smaller DFTs and

combining them to get the final result. The DFT itself is defined as:

N-1 nk
X[kl= ¥ x[n]lW™ k=0,1,..N—I
n=0

wk =e-j(%]nk

The complexity of a DSP algorithm is determined by the number of multiplication

operations to be done. The number of multiplication operations in a DFT is of O(N?) and

? Discrete Fourier Transform
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for an FFT is of O(NlogN), which makes it more suitable for implementation in

hardware or software (refer to [45] for detailed explanation of DFT and FFT).

There are many ways to break down a DFT. One is called a decimation in time and

the other is decimation in frequency. The two butterflies used for each of these are shown

in Figure 17.

Decimation-in-Time Decimation-in-Frequency
@ 2) XeX) @ 2) X X)
(b b)e” W Y. Y) b by’ WK N (Y. Y)

X, =a, +W' *b,-W'*b) | [X, =a, +b,
X, =a,+(W*b, +W *b) @ | X, =a,+b,

Y, =a,-(W)*b,-W'*b,) : [Y, =(a,-b)*W} ~(a, —b)*W}
Yi =ai —(er *bi +W;k *br) :

Y, =(a;—b)*W' +(a, b ) *W'

Figure 17. Decimation-in-time and decimation-in-frequency butterflies

As can be seen, the number of operations in each implementation is the same but,
the decimation-in-frequency is more suitable because the multiplication is done after the
additions. Usually if multiplication is done first, the results would grow in number of bits
needed to represent them and because most implementations are based on fixed-point
addition and multiplication, the results need to be rounded. This rounding of the results
introduces error and noise in the system. So the FFT hardware based on the decimation-

in-frequency FFT is selected for this demonstration.



6.2. An Efficient Architecture for a 1024-point Complex FFT
As shown in chapter 4, the optimal number of memory banks needed during the

computation of a radix-2 1024-point FFT with one butterfly is two. So based on this, two
distinct memory banks are needed to hold the input data, the temporary intermediate in-
place results and finally for the storage of the FFT result. Because a complex FFT engine
is to be implemented, twice this amount is needed to store the real and imaginary parts of

each value. So the total number of memory banks needed is four.

An algorithm with a single butterfly was selected for implementation. This results
in the smallest area possible for this design. If more performance is needed out of this
design, more butterfly elements can be assigned that calculate more intermediate values at
the same time. With careful design and scheduling, one can achieve greater performance

by sacrificing more silicon area.

In chapter 3, an architecture was seen that can be used to implement most signal
processing algorithms. Refining that architecture for the complex FFT, the following

architecture is arrived at.
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RAG] = Read Address Generator #1

WAG 1=Write Address Generator #1
WAG! -:-{-- l ... > Real F®----- .-RAG1 RAG?2 = Read Address Generator #2

WAG2=Write Address Generator #2
(Bank 0)

“a I R

- Butterfly Engine
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(Bank 1) >~ A Twiddle
Factor
¢ | Lookup

Real ~— Table

» A

1 Imaginary .

Xv_écz --J---p (Bank 3) A A
w-.__| Controller

Figure 18. Proposed architecture for complex FFT

There is only one butterfly computation engine. There are also four different
address generators used to address the source operands (both real and imaginary) and the
destination operands (both real and imaginary). Another memory holds the twiddle factors

that would be addressed with another address generator.

6.3. FFT Signal-flow Graph and Memory Access Pattern

The Cooley-Tukey implementation of an FFT, accesses the source variables in-
order and stores the intermediate results in place of the source variables. The starting point
is a 4-point FFT, which is increased to 32-point FFT to find a regular pattern for storage

and accesses to those variables.

The arrangement of the variables of a 4-point and an 8-point decimation-in-

frequency FFT and their corresponding signal flow graphs are shown in Figure 19.
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8-point radix-2 FFT memory access for a single butterfly and single memory bank

Figure 19. Coolev-Tukey FFT access patterns

As can be seen the source and all the intermediate variables are stored in increasing
order from zero and the results are stored in bit-reversed order. In the corresponding
signal flow graphs, the computation order is from top to bottom and from left to right.
This storage and access scheme is not suitable for use with two memory banks and a single
butterfly engine. The reason is that, with two storage banks, collisions should be avoided
to speed up the memory access. Otherwise, when collisions or memory access conflicts

occur, the memory should be accessed consecutively to retrieve/store two
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source/destination variables. Now a storage and access scheme should be found that is

more efficient and easy to implement in hardware.

6.4. Manipulating Memory Access Patterns

In general, to avoid collisions in multiple memory processing engines, it is best to
interleave the storage of variables. By interleaving, one means storing variables accessed at
consecutive points in time in different banks of memory. Interleaving does not always
alleviate the memory conflicts in every algorithm and a more detailed study of a specific

algorithm is needed to devise a good storage and access scheme.

In [14] and [15], an efficient way to store intermediate variables of a radix-2 FFT
algorithm is proposed. In that paper, the suggested method by authors results in two
different access patterns. One is a stride 1 and the other is bit-reversed. They do not show
all the iterations of the computation. From the storage order they suggest, the first pass of

computations is with no conflicts, but the second pass will cause some conflicts.

The storage and access schemes are refined to have zero conflicts and simple
address generators. The data-path is also pipelined to achieve the fastest execution cycle.
The zero conflict scheme makes sure this pipeline is not starved or stalled to get the

maximum performance.

To do this, one should start from the nodes that produce the last results and start
assigning addresses to those nodes keeping in mind to interleave the accesses. Then try to
minimize or even remove conflicts by simple swapping using multiplexers and additional
registers. This can be derived from simple observation of the access patterns. This

architecture is now generalized to any number of points in the FFT as follows.
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First lets look at the addresses and try to find their patterns. Figure 20 shows the

addresses for a 4-point and 8-point radix-2 DIF FFT.

0 Addresses for both banks
W | RW | /W R
2 0 00} 00 0
1 11 11 1
1
3 Samples in memory after each iteration
BO Bl BO Bl BO Bl
0 2 0 1 0 2
I 3 2 3 1 3

4-point radix 2 FFT memory access for a single butterfly and two memory banks

0 0 Addresses for both bank
, W JRW!IRW|RWJ] R
4 0 Joolooloo] o
2 2 2 121212 2
1 2121121 1
3 6 3 33133]33 3
4 1 —
Samples in memory after each iteration
5 5 BO BL{B0 Bif{BO BI{B0 Bl
0 alo 210 1fo0 4
6 3 2 6 {1 3fj4 sf2 6
1 s{4 62 381 s
7 7 3 745 71016 7083 1

8-point radix 2 FFT memory access for a single butterfly and two memory banks

Figure 20. Modified accesses for 4 & 8-point Cooley-Tukey FFT (two memory banks)

From this figure and the addresses, it seems that all the writes are bit-reversed and
all the reads except the last one are sequential (stride 1) and the last read is bit-reversed.

To confirm this, the 16 and 32-point FFTs were tried and the same conclusion was drawn.

From these tables, it is clear that to write the results of the butterfly back to
memory at the proper location, the results of two consecutive iterations need to be

scheduled so that results from one iteration is sent to the same memory bank and the next
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iteration to the other memory bank. The final architecture is shown in Figure 21. As can be
seen, a single butterfly engine is followed by a skew buffer that routes the results to a
different bank. There are four registers and two multiplexers in this skew buffer to skew
the results so that they are available for writing to the address provided by the address
generators based on the address assignments done in Figure 20. The details of this skew

buffer is presented in the next chapter.

Twiddle Factors [s-------oonroormrrrmmsesessssrensonnoneres s oo
Look-up Table :

Butterfly Engine /
Skew Buffer |[&-----; .

> Controller

Figure 21. Final FFT architecture with skew buffer registers

The controller is responsible for orchestrating the order of operations and enabling
different resisters at different cycles, controlling the multiplexer select lines, and the

address generators.

Next chapter will discuss the data path and control logic in detail and present

different aspects of VHDL design.



Chapter 7

7. Detailed VHDL Design

In this chapter, all the necessary steps from specification to implementation of a
radix-2 1024-point Cooley-Tukey FFT engine with two memory banks is detailed. The
design is completely done in VHDL and successfully fitted on a Xilinx Virtex
V150PQ240-6 [33]. The synthesis is done using the Synplicity’s Synplify tool and

simulations are done using ModelTechnology’s Modelsim VHDL simulator.

The data path design is detailed first and different tradeoffs made in the process are

shown then the control logic design is explained.

7.1. Design of the Data Path and Its Elements
In most signal processing algorithms especially in Digital Signal Processing (DSP),

there are many basic elements that are used to construct the data path of a system. The
basic elements of a DSP system are addition, multiplication and multiply-accumulate
operations. There are other operations that relate to DSP systems in general, but the ones

mentioned above are the most basic and widely used in any DSP algorithm.

To improve the area/performance merit of a system, one should first do
optimizations at the highest level of a design, namely: specification and architecture. After
architectural optimizations, the system’s building blocks or components should be

improved. This improvement will, in effect, enhance the overall system operation.
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The most costly operation in a DSP system is a multiplication operator. A
multiplier module is both area consuming and also sluggish in the performance aspect.
Therefore, multiplication is the main bottleneck in the area/performance of a data path and

can change the characteristics of a system in both aspects.

Choosing the best components in general and the best multiplier for any DSP
system, is the best strategy to follow for improving the system performance. In the
following sections, different architectures for an adder and a multiplier, which are the basic

building blocks of the FFT engine, are reviewed.

7.1.1. Addition Schemes
Adders could be categorized into the following: 1-bit adders, carry-propagate

adders (CPA), carry-save adders (CSA), and multi-operand adders [34].

The 1-bit adders include Half-Adder (HA) and Full-Adder (FA). In the carry-
propagate adders the carry bit to the next stage of an n-bit adder is derived from the
previous stage’s carry-bit and the current input bits with some additional logic. Carry-
propagate adders include ripple-carry adders (RCA), carry-skip adders (CSKA), carry-
select adders (CSLA), carry-increment adders (CIA), conditional-sum adders (COSA),

carry-lookahead adders (CLA), and parallel-prefix adders (PPA).

The parallel-prefix adders are the most flexible ones that include a preprocessing,
carry-lookahead, and postprocessing step. They can have the area and speed
characteristics of all the adders mentioned above. They are basically a universal adder

architecture with all the area-delay trade-offs. There are three different variations of PPAs.



They are called Kogge-Stone implementation (PPA-KS), Skansky implementation (PPA-

SK) and Brent-Kung implementation (PPA-BK).

Carry-save adders (CSA) are three-operand adders that do not do any carry
propagation and just save (pass) all the carry bits calculated. Multi-operand adders can be
comprised of the carry-save adder stages and carry-propagate adder stages to compute the

final addition. These adders can be constructed in array or tree (Wallace tree) topologies.

ab ab ay by, ab abo
e Co | Con @LFAJE cm
S 3 Sy-1 Sy Sg
Half Adder : Full Adder

Cout
pi = 0; ¢, = ¢i,; and ¢, selected
pi= l: ¢, — ¢, and ¢;( skipped Sp-1 P
Carry-skip Adder (CSKA)
N ag1 byy 32 bpa a by aghy
Preprocessing:
gi=a.b
pi=a;®b T 4 L1 7 Cin
Pa-1» 8a- Pi. g1 Po. £o
Carry-lookahead @ - > Prefix Algorithm
Preprocessing: Cou [% @
......... ’ ~esesann
Si=Ppi-G
Sa-1 Sn-2 $; So
Parallel-prefix Adder

Figure 22. A few different adder structures
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The ripple carry adders are almost the smallest after CSKA adders and the slowest

ones, PPA-SK / PPA-KS and COSA are the fastest adders for 64-bit additions.

Exploring all these structures and choosing the optimum area/performance needed
depend on the target technology that is used. For ASICs, these structures are all viable
solutions and any of them can be implemented. The selection depends on the design
specifications and constraints. These modules should preferably be implemented and put in
a library that a high-level synthesis tool has access to. Then the area/speed selection would
be the assignment part of the high-level synthesis. If the selection of the architecture is
done at a higher level, the tool would also be able to insert pipeline registers to speed up

the performance of the adders, yet preserve the original algorithm.

Area Adder Relative Area

/
//‘::::;

—+—PPA-SK

CIA / PPA-BK
—6—CLA /CSLA
—@—COSA / PPA-KS

Figure 23. Areas for different adder architecture



Delay Adder Relative Speed

iad
/ —o—RCA
——CSKA
/ PPA-BK/CLA
CSLA /CIA
/ ~—i—PPA-SK /PPA-KS / COSA

Figure 24. Speed for different adder architectures

The case is completely different for FPGAs. Almost all FPGAs have dedicated
carry-logic resources to speed up the adders, subtractors, incrementers and counters.
These carry chains can go up and/or down the FPGA die but not in all directions. If the
regular routing had been used instead of these dedicated routes, the delay associated with

arithmetic operators would be big.

All these architectures are presented to show the different trade-offs and
architectures possible. One should refer to other references for complete discussion on
specific algorithm.

7.1.2. Multiplication Schemes

As said before, multiplication is very costly regarding both area and speed. There

are many architectures [35], [36] that help improve the speed, but at the expense of

increased area.
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The following are some examples of different multiplier architectures:

I. Shift and add and bit-serial multiplier

2. Booth and modified-booth algorithm

3. Wallace tree multiplier (using CAS and CLA)

4. Non-additive multiply modulus (NMM) using Wallace tree and CPAs
5. Pezaris array multiplier

6. Array (Braun) Muluplier

7. Baugh-Wooley multiplier

8. Systolic array multiplier

9. Constant coefficient multiplier

10. Distributed arithmetic multiplier (a special case of constant coefficient

multiplier)
11. Partial product lookup table based multiplier

The shift and add multiplier is based on a single adder with three registers and
some control circuitry. One register is used as the multiplicand and another for the
multiplier, which will be shifted at each clock tick, and the last register that is an
accumulator and holds the partial result and the final result of multiplication. This

multiplication scheme can be done with serial input data.
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Figure 25. Different multiplication architectures
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Figure 25 shows four different popular multiplier architectures. The first one is a
shift and add operation that is very area efficient. The other one is a lookup table based
6x6 bit multiplier that divides the two input vectors A[5:0] and B[5:0] and forms partial
multiplication results and adds them together. By using four 3x3 lookup tables that hold
the values of multiplication of 3-bit by 3-bit numbers and a few shift operations, which use

no logic to implement, this multiplier forms the final result.

The third multiplier structure is a modified booth multiplier, which also like the
lookup table one, uses a divide and conquer scheme. This algorithm partitions the n-bit
multiplier into n/2 3-bit fields with 1-bit overlap. Then based on these three bits it does an
add/subtract by multiplicand, add/subtract by twice the multiplicand and no operation.
After n/2 iterations the final result is ready. This multiplier can be pipelined at every stage

of operation up to n/2 levels. This is a very efficient multiplier in ASIC implementations.

The last multiplier is an array (Braun) signed multiplier that is the exploitation of
the multiplication operation expanded into shifts and additions. The first stage is a series of
AND gates that ANDs the least significant bit of multiplier by all the bits of the
multiplicand. The next stages are a series of adder-multiplexers that pass the previous
stages partial result if the corresponding bit of the multiplier is zero, otherwise it is added
to the multiplicand. To perform signed multiplication, adders are chosen to be one bit
larger and the operands are sign extended and also the last stage should be a subtarctor-
multiplexer stage. This multiplier is very easy to implement both in ASIC and FPGA.
Although it has more area and it is slower than the Modified-Booth-Recoded multiplier, it

is faster and more suited to FPGA implementation.
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Piplining this multiplier is a bit more complicated and registers should be put at
different places so that the overall timing (arrival of related data) of the multiplier does not
change and the correct result is produced at the output. It is possible to do n-level
pipelined array multiplier where n is the number of bits in the multiplier. If the number of
bits in the multiplier and multiplicand are not equal, there is a trade-off between choosing

more adder bits and more levels.

In DSP applications there is also a more dominant operation that is the multiply

accumulate of a number of vectors by another constant vector or the inner product of a

M
vector with another constant vector. This is shown by: y = 2 A X,
k=1

In this equation Ay is the constant vector and Xy is the input vector. This operation
is best done with what is called Distributed Arithmetic (DA). In DSP algorithms, it usually
is difficult to distinguish individual operations (additions, multiplications) and hence the
name Distributed Arithmetic. This method is basically a bit-serial operation with the
difference that multiple vectors can be applied simultaneously. This is usually called n-bit
at-a-time DA; where n is the total number of bits serially applied to the DA module. The
DA module is composed of a number of lookup tables, an accumulator and a number of
shifter units. For better understanding of this enabling technique refer to [37], [38], [39],

(40], and [41].

7.1.3. FFT Butterfly Data Path Implementation
As was seen in the previous sections, multipliers are very costly to implement. In

chapter 6 decimation-in-frequency FFT algorithm was selected for implementation. From



Figure 17, the detailed data path for the DIF FFT butterfly engine can be derived. It can be
seen that there are three additions, three subtractions and four multiplications by the

twiddle factors, which are to be pre-computed and stored in lookup tables.

&l Table |WF T AW
[ 4
Memory_ Bank | | g ——————
(Imaginary)
Skew Buffer
Memory Bank 0 [ |
(Imaginary) -
[ 2
Memory Bank | | g —
(Real)
Skew Buffer
Memory Bank O g | .
(Real)

Figure 26. DIF butterfly engine data path details

In Figure 26, pipelining registers for the adders and multipliers are not shown. For
increasing the computation speed of the engine, the multiplier is heavily pipelined and
additional pipeline registers are inserted after the adders to balance and preserve the actual

data dependencies of the data flow. One should be careful of choosing the total number of



pipeline levels. This is because, if the number of iterations in the FFT is less than the
number of pipeline levels, the results of the last iteration have not yet been written back to
the memories. If this is the case, the algorithm would not function properly. This is true of
most algorithms, in which the retiming and the addition of pipeline registers should not

affect the outcome of the algorithm.

Figure 27 shows the detailed view of the skew buffers. The inputs to each skew
buffer are the two real and the two imaginary parts of the butterfly output. There is a
counter that counts the number of the data input to this buffer. At each step of the count a
new set of values are stored in a register pair; first RO, then R1, then R2, then R3 and the
cycle repeats. The counter is delayed by two cycles and which selects a pair from the
register pairs. This construct makes sure that the data has no gaps and the correct order of

values are generated at the outputs.

RO[1:0}

RI[1:0]

R2(1:0]

R3([1:0]

Figure 27. Skew buffer detailed schematic



The input data is assumed to be 8 bits wide for both real and imaginary parts. The
memory banks are chosen to have 16-bit data busses. So, the input data is written to the
memories on their least significant 8 bits and the final result is truncated to 16 bits for both
real and imaginary parts (most significant bits of the final result is used). It is the

responsibility of the user to make sure that the final result does not overflow.

The other components are sized based on their input values. The adders and
subtractors accept 16-bits signed data. Adding or subtracting two 16-bit data results in a
17-bit data. The multipliers should multiply the output of adders (17 bits) by the 8-bit
twiddle factors. This results in 17x8 signed multipliers that produce 25-bit result. The
output of the butterfly are truncated to 16-bits, and written back to memories. This may
result in some noise ([42], [43], [44], [45]) to be added to the computation, which is true

of all fixed-point systems.

As can be seen from Figure 20, for an n-point FFT, two memory banks with n/2
words each are needed and because two banks are needed for storing the real part and
imaginary parts of a complex data, there should be total of four memories of n/2 words
each. For a 1024-point complex FFT with 16-bit data, four 512*16-bit memories are
needed. The total number of bits used for memories is 4*512*16 that is equal to 32768

bits.

With this architecture, there could be a conflict and race to access the memories.
The output of the skew registers should be written to the memories and the butterfly
should be fed by new data from the memories. One could schedule the operations to be

one after another and sequential. But this would increase the number of cycles and reduces



the performance. To alleviate this, one can use dual-port memories. Dual-port memories
are very popular in most FPGAs and are also available in most ASIC libraries. If one
wanted to use discrete memory component, this would be very costly and probably not a
good choice and other schemes should be considered. Having single chip is more desirable

than multiple chips in many applications.

FPGAs are very abundant in the number of registers that can also be used as
memory elements. But if they are used as memory, there would not be enough registers
left for implementing state machines and other functional elements that need registers. In
modern FPGA architectures, other than abundant registers, there are also sparse/small
flexible memory elements in each CLB*' that can be configured as single-, dual-port or
even Content-Addressable Memory (CAM). There could also be flexible block memories
that are larger in size compared to the sparse memory blocks. In Xilinx Virtex FPGAs,

there are enough dual-ported block memory to implement the 1024-point FFT.

CLBs could also be configured as read-only memory (ROM) or lookup tables.
This is useful for implementing the lookup tables for the real and imaginary parts of the
twiddle factors. The twiddle factors are computed using a C program for a specific

number of points and are hard coded into the VHDL description.

7.2. Design of the Control Logic

The controller design is responsible for managing the order of operations and to
provide control signals to different modules. It has to control the multiplexer select lines,

the different modules’ enable signals, and the memories control signals. This module is

*! Configurable Logic Block
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also responsible for receiving the input data and storing it in the proper order into the
memories. It is also responsible for sending the result of the computation out of the
module. The input data is assumed to be a stream of 2048 bytes. Each byte pair is a set of

real and imaginary data samples.

Datan[7:0] =r=#» CFFT_1024 f=d=#> DataOut[7:0]

Start — - Done

>
Clock ——l-.

C'mk_/_\_/—\_/.\_/—\_/—\_-_- !
Dataln(7:0] X Re Y im >< Rj( Im__
san TN ¢ :

DataOut[7:0] E : : : : : Re X Im X Re X Im X

—— Busy

Busy /1 ¢ ¢ & &1 N
o S T T N G N N N

Figure 28. Top-level module for 1024-point complex FFT and its I/O timing

Figure 28 shows the top-level module for the 1024-point complex FFT with the
associated input/output timing. The Start signal is asserted and then the input data is
applied at the Dataln port, real followed by the imaginary part. After the assertion of the
Start signal the Busy signal would go high indicating that the module is busy processing.
Busy stays high until the FFT computation is done and the data is sent out on the DataOut

port. The start of the output data stream is indicated by the Done signal.

There should be a way to transfer the input data to the memories through the

Dataln port. The controller is a Finite State Machine (FSM) that polls the Start signal. As



soon as this signal goes high, the state machine starts one of the bit-reversed address
generators, reads in the data and stores them at the proper memory bank and location that
was already shown in Figure 20. This is shown as state SO in state diagram of Figure 29

along with its detailed state names.

After all the data samples are read into the memories, the controller enables the
data path, starts reading the data samples from the memory banks and sends them to the
butterfly engine. The enable signal on different modules reduces the power consumption of
the system and is a good design practice to minimize the amount of logic that is being
switched. The controller would write the result of the computation back into the memories
at the proper locations after a number of cycles after the application of data that is equal to
the pipeline delay of the butterfly engine. The controller will repeat this process 5120
times, which is calculated as (n/2)*loga(n) for an n-point FFT. This number is the number
of butterflies in an n-point FFT. The number of levels in the FFT is log.(n) and the number
of nodes in each level is n/2. After the last iteration of the FFT computation the data path
pipeline should be flushed to memory. This is shown as state S1 in state diagram of Figure

29 along with its detailed state names.

Finally the FSM has to read the final result out of the memories and send them out
on the DataOut. Once this is complete the process is done and the controller goes into the
IDLE state where it is ready to receive another set of samples. This is shown as state S2 in

state diagram of Figure 29 along with its detailed state names.

The controller is responsible for generating all the control and enable signals to all

the modules in the design, so it has lots of signals traveling around the chip. For a chip to
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run fast, the data path should be able to run at the required speed and also the controller
should be able to provide the control signals at the proper time. One-hot/cold encoding for
the state machines are preferred because of the abundant registers in the FPGAs.
Otherwise the decoding logic reduces the speed of the design. This encoding type could
also be very useful for optimizing critical parts of an ASIC design, because of the much

less complex decode logic for the state machine.

‘Read In Data &
=0 :Write Into Memory :

iStales:
:WR_DOR, WR_DOI, :
:WR_DIR, WR_DII :

DONE_PROCESS

:Compute Butterfly :
‘Read Results from e ‘Srates: ;
:Memory & Send :START_PROCESS. :
EThem Out :PROCESS_NODE, .
. : - ‘FLUSH
‘Stares: : K R AR ’

:RD_DOR, RD_DOI,
:RD_DIR, RD_DII

Figure 29. Simplified state diagram of the controller

7.3. Design Synthesis
The synthesis is done using the Synplicity’s Synplify tool. The constraints used are

only clock constraints. The goal is to run the design at a frequency of S0 MHz. Other
types of constraints could be input delays (arrival times), output delays (max delay), multi-
cycle paths, which are common to both FPGAs and ASICs and clock skews, output drive

and load, which apply to ASICs only.
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7.3.1. Synthesis results
The design is successfully placed and routed on a Xilinx Virtex V150PQ240-6

using the Xilinx Alliance v1.51. It occupies 94% of the device and 66% of the available
block RAMs. The timing reports also show that the design is able to run at SO MHz. Total

equivalent ASIC gates, reported by Xilinx Alliance, is 165896.

7.3. Constructing a Testbench
For every HDL design, there should be an associated testbench to verify the

functionality of the design. This testbench could also be used to simulate the back-
annotated design after the place and route in the FPGAs and after the layout, and routing
in the ASICS. A testbench could be written for every single module or for the top-level
module only. As a designer becomes more proficient in doing designs in HDL, there may
not be a need for every single module, and the top-level simulation is enough. A good
testbench should cover all possible scenarios of the unit under test (UUT). Usually, the
test vectors or stimulus of the design is stored in files that are read by the VHDL testbench

and are applied to the UUT.
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Figure 30. Basic simulation testbench

For verifying functionality, one can choose between two methods. One is that the
designer should construct the behavioral model of the design and instantiate it in the
testbench, along with the unit under test. Then the stimulus is applied to both the RTL
design and the behavioral model. And finally the two outputs are compared in the
testbench itself. The second method, which is easier to implement, is that the outputs of
the unit under test are stored in files that are compared with the expected results from
another source (software simulations). The second method is chosen here for the sake of
simplicity and that the purpose and emphasis of this work is on showing the techniques

presented.

7.4.1. Results from the simulation and the FFT benchmarks
From the simulations and the structure of this FFT, it is seen that it takes 2048

cycles to transfer the 2048 data bytes (real and imaginary) to the memories and it also
takes 2048 cycles to send out the final results. The FFT computation takes

12+(1024/2)*10og(1024)+12 = 5144 cycles. With 20 ns cycles time (from the synthesis
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result of 50 MHz clock), for transferring data to/from the memories it takes 40.96 us and
to compute the FFT it takes 102.88 us. If this computation is done after another process,

then one can ignore the transfer of data to/from memories.

A comparison between different implementations (from custom ASIC [46], [47] to
DSP processor implementations) of the 1024-point radix-2 complex FFT, can be seen in
Table 10 and Figure 31 (some of the results are taken from reference [48]). As can be seen
in this figure, even the single butterfly implementation of the FFT is very fast compared
with most of the general purpose DSPs. The fastest (46 Ws) is the Analog Devices Inc.
ADSP-21160 and the second fastest (61 ps) is the custom FFT ASIC TM-66 swi-FFT
from Texas Memory Systems Inc. It is seen that it is possible to add more butterflies and
reduce the execution time. With two butterfly engine, the execution time goes down to 52

us and with four butterflies down to 26 ys.

Ar(hltulun _ N Fime sy . N

jAnalo DSP2111 '

<2 BiitterflieSFETs

T\/I-66 swaFT
- Biittert] ..L.l T :

TI TMS320C60xx 104
TI TMS320C80 110
TI TMS320C67xx 125
Analog ADSP2162 170
Motorola DSP56002 210
Lucent DSP1627 310
NEC UPD77015 320
Analog ADSP2171 360
TI TMS320C44 390
TI TMS320C31 410

Table 10. FFT benchmark results (tabulated)
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1024-point radix-2 Complex FFT Benchmark
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Figure 31. FFT benchmarks results (chart)
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Chapter 8

8. Conclusions and Future Work

This concludes the work and provides the missing links for future researchers and

interested individuals.

8.1. Conclusions

A generic architecture has been proposed that can execute a variety of digital
signal processing algorithms. It consisted of a core processing engine and multiple
memory banks that provide the input data to this core and are also used to store the
intermediate values and the final resuits of the computation. A method has been proposed
to extract the maximum pipeline level for a specific algorithm represented in signal flow
graph form. From this signal flow graph, and by exploring different scan orders of
operations, one can extract the delays on each recursive edge of the graph. If all these
values are greater than one, it is possible to move all but one of them inside the data path
and use them as pipeline registers to speedup the processing engine. After this step, the
graph is scheduled and the edges are to be assigned to a memory bank while balancing the
accesses. This problem falls into the category of NP-complete problems for a large number
of edges, so an exhaustive search method has been developed in C. An ILP formulation is
also presented that assists in this assignment and reduces the amount of time necessary to
arrive at a reasonable assignment. An automatic ILP generation program has been written

in C that works for an arbitrary radix-2 FFT algorithm.
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A program has been written (based on previous work) to ease in the design of a
hardware-based address generator for arbitrary addresses of size power of two. An
efficient architecture for a 1024-point radix-2 FFT has been presented. For this
architecture, a novel address assignment and ordering of calculations has been proposed
for a two memory bank systemn that removes the memory address conflicts and provides

the core with proper data.

Finally, the complete VHDL design of this 1024 point radix-2 FFT has been done,
the design was implemented in an FPGA and simulated in a testbench. A C program has

been developed for the generation of twiddle factors for this design.

8.2. Suggested Directions to Continue This Work
The architecture proposed is generalized enough to be used for different DSP

algorithms. This should be verified with other types of DSP algorithms and proved
efficient with those algorithms. The process of bank assignments using the exhaustive
search takes unreasonable amount of time to run, even the ILP formulation has a long run
time. Other procedural and formal methods should be devised that would come to a

solution with less amount of time.

The heuristics to find the best order of operations and the access order to the
memories and to assign addresses for each memory bank should be formalized and

expanded to cover different algorithms.

There could be a lot of improvements in the address generator and its
generalization. One can find an automatic processes to synthesize arbitrary hardware-

based address generators for any type of access and algorithm.
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The implementation of the FFT design could be improved by parallelizing the
transfer of data in/out of the memories; i.e., while new data is being transferred to the
memories the old results could be transferred out of the memories. This requires some
modifications to the first write and last read orders; otherwise there would be conflicts and
data corruption. The number of butterfly engines and the memory banks could be
increased to increase the throughput and decrease the execution time of the FFT. New

address assignment and access order should be devised to alleviate the conflicts.
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ASICs... the website
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hrtp://www.cryptography.com/

Data Compression Pointers

http:/fwww.internz.com/compression-pointers.html

Don Lancaster's GURU'S LAIR home page

http:/www.tinaja.com/

EDIF Home Page

http:/Avww.edif.org/

Hamburg VHDL Archive

http://tech-www.informatik.uni-hamburg.de/vhdl/vhdl.html

Hardware Compilation Home Page

hitp:/fwww.comlab.ox.ac.uk/oucl/hwcomp_html

Library of Arithmetic Modules

http://www.iis.ee.ethz.ch/zimmi

Mathematics of Arrays and PSI Compiler

http:/fivww.cs.umr.edu/~rvep/moa/moacc.html
http:/fwww.cs.albany.edu/~psi/efforts/compiler/compiler.html

http://vww.cs.albany.edu/~psi/research_efforts.html

Model Technology

http://www.model.com

OptiMagic's Programmable Logic (FPGA, CPLD) Jump Station

http://www.optimagic.com/

Reconfigurable Cryptography (A Hardware Compiler for Cryptographic Applications)

hittp://www.pdos.lcs.mit.edu/~cananian/Projects/ele580a/writeup.html

(All the Best of) Spread Spectrum Scene Online

hutp://sss-mag.com/index.himl




Synplicity HomePage

http:/fwww.synplicity.com

TechOnLine

http://www.techonline.com

VHDL International Home Page

http:/fwww.vhdl.org/

VIUF comp.lang.vhdl Archive

hutp:/fvhdl.org/vi/comp.lang.vhdl/

Xilinx Hompage

hup:/Awvww . xilinx.com

Xputer Page

hutp://xputers.informatik.uni-kl.de/xputer/index_xputer.hrml




Appendix

A. Memory Bank Assignment Exhaustive Search
The program is called BANKS, is written in C and is included on the

accompanying diskette in the BANKS folder. The source is called BANKS.C and the
executable is BANKS.EXE. It has been compiled using Microsoft Visual C++ 5.0. All the

project files necessary files is also included.

A.l. Exhaustive Search C Source Program for 16-point radix-4 FFT

#include <conio.h>
#include <limics.h>
#inciude <stdio.h>
#include <szdlib.h>
#include <time._h>

#define FALSE (0 == 1)
tdefine TRUE (i1 ==

char *Copyright = “"Memory Bank Assignment Exhaustive Search for l6-point radix-4 FFT\n*®
~Copyright (c) 1999 Amal Khailtash (akhailtash@spacebridge.com)\n\n®;

tdefine NO_OF_EDGES 32
tdefine NO_OF_NODES 8

int src[NO_OF_EDGES! = {
0, 0. 0, O,
I, L, 1, 1,
2, 2, 2, 2,
3, 3, 3, 3,
4. 4. 4. 4.
5, 5., 5, 5.
6, 6, 6, 6,
7. 7, 7. 7
int &st[NO_OF_E=DGES] = (
4, 5. 6. 7,
4. S, 6. 7,
4, 5, 6, 7.
4. 5, 6. 7.
¢, 0, 0, 0.
T, 01,1, 1,
2, 2, 2, 2.
3, 3. 3, 3
}:
int node_i_o{NO_OF_NODES] {2]([4] = (
{ ( 16, 17, 18, 18}, { 0, 1, 2, 31} 1}.
{ (20, 21, 22, 23 }, { 4. 5., 6. 71} 1,
{ ( 24, 25, 26, 27}, { 8, 9, 10, 11} }.
{ ( 28, 29, 30, 31}, { 12, 13, 14, 15} }.
t¢ o0, 4, 8, 12}, { 16, 17, 18, 15} },
¢ 1, s, 9, 13}, (20, 21, 22, 23} },
{( 2, 6. 10, 14 )}, { 24. 25, 26, 27 } 1},
¢ ¢ 3. 7, 11, 15}, ( 28, 29, 30, 311} }

}:

struct edge {
int src_node;
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int dst_node:
int bank:
} edges [NO_OF_EDGES];

struct node {
inc inputsl([4]:
inc outputs(4]:
} nodes [NO_CF_NODES] ;

void read_edges_andé_nodes(
{

"
o

n

i, 3

"

"

oxr( i=Q; i<NO_OF_EDGES:

~

edges [i] .src_node

edges{i].dst_node = dstl[:i

or( i=0; i<NO_OF_NODES;

~~ T~

for( j=0; j<d: j== )
{
nodes (i} .inputs(j}
nodes (i} .outputs{j]
1

}

veoiag )

ies )

void assign_banks( unsigned long b )

{

S 3.
int 7

for( i=0; 1<NO_OF_EDGES:
{

ier )

node_i_ofil{0i[j];
node_3i_oflijf1](3];

edges[i}.bank = (int) ((b >> i) & 0Ox1L);

}
}

struct symbol (

int cost:

int count:

int used:
} symbols{16];
symbol_costsi] = ( 2, %, 1,
void init_symbols_costs( vo
{

inT i;

for (i=0; i<l6; ie-)

{

symbols(i].cost

symbols[i] .count
symbols(i] .used

Q:
FALS

}
}

0. 1, 0.

id j

E;

Q.

symbol_costs(i]:

int calculate_cost{ int *symbols_used |}

int i, symbol_i, symbol_o:

{
int cost;

for (i=0; i<NO_OF_NODES:

symbol_i = edgesinocdes(i].inputs(0
edges [nodes([i] .inputs(1l
edges [nodes([i] -irputs(2
edges [nodes[i] .inputs(3

symbol_o = edgesinodes[i] -outputs|
edges[nodes[i] .outputsl(
edges [nodes[i] .ocutputs(
edges [nodes[i} -outputs{

ive)

11.
13.
11.
1.

0
i
2
3

1
1
1
1

1.

!
1
)]
]

1, 0.
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symbols[symbol_i].count+~;
symbols[symbol_i] .used = TRUE;
symbols [symbol_o] .counte-;
symbols[symbol_o] .used = TRUE:;

}

*symbols_used = 0:; cost = 0:

for (i=0; 1i<1l6; i+~)

{

if (symbols{i] .used)

-~}

(*symbols_used) +~;
cost += symbols[i].cost * symbols[i].count:
symbols[i].count = 0; /* reset the counter */
symbols([i] .used = FALSE;
}
}
/* princf(“%d\t", cost):*/

return cost:

kbhic() )
ecch()==27 )
(0} :

o

(
exi

int SPACE_pressed( void )
{

£ ( kbhic() )

if ( (ch=getch())==* ' )
return TRUE:;

else if ( ch==27 }
exit(l);

else
return FALSE:

} else
return FALSE:;
}

veid wairz_for_SPACE( char *msg )
{
printf( "$s\n", msg }
while( getch()!=" * )

CTERY

}

void report_time( char *msg )
{
struct tm “Tm;
time_t currenc_time;
static char time_now(80]:

time( &current_time ):
tm = localtime( &current_time );
sprinctf( time_now, *%02d:%¥02d4:%024", tm->tm_hour, tm—>tm_min, tm->tm_sec }:
princf( "$s%s\n", msg, time_now ):
}

void get_time( char "now )
(
// struct tm rem;

time_t current_time;

time( &current_ctime };

// tm = localtime( &currenc_time );

7/ sprintf{ now, "%02d4d:%02d:%024*. tm->tm_hour, tm->tm_min, tm->tm_sec }:
sprintf( now, asctime(localtime{&current_time)} )

}

void main()

{
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unsigned long i. starc;

int current_cost, last_cost = 9999%;
int words;

FILE hed-H

int show = TRUE;

char time_now(80];

princf( Copyright );
printf( “Press ESC to exit program,\n"
- SPACE to stop/restart displaying the current cost...\nr\a” ):

do {
rincf( "Enter starting cost in hex (0 if exploring all): = )
} while( scanf( "%x°, &start )!'= 1)

~

& =

1f ¢

{
fprintf(stderr, *Unable to open ‘'bank.dat’.\n"}:;
exitc(l);

open{ “banks.dat", *w" ):
p==NULL )

!
I th

// report_time( *Started at " }:
ger_time( time_now };
princtf( *\nStarted at %¥s\a", time_now }:
fprincf( £p, *Started at %s\n", time_now };

read_edges_and_nodes() ;
initc_symbols_costs();

for( isstart; i<0OXFFFFFFFFL; i+= )
(
I exitc_if_ESC_pressed():*/
if ( SPACE_pressed() )
{
if ( show )} show
else show
}

E
G

assign_banks( i ):

current_cost = calculaze_cost( &words }:
current _coOst «= words:

1€ ( show )

{

VA princf( "%08iX\t%d\csd", i, currenc_cost. words );*/
prinzf( *\r%081lX", i );

£ {( current_cost<=lasc_cost )

~— e

princf{ "\rLast = $6d\tCurrent = %6d\tWords = %d\tSymbol = %081X\n-",
last_cost, current_cost, words, i ):
fprincf( fp, "Last = %6d\tCurrent = $6d\tWords = %d\t%081X\n",
last_cost, current_cost, words, i }:
last_cost = current_cost;

/- wait_for_SPACE():*/
1

// report_time( "Finished at " };
get_time( time_now ):
printf( *Finished at %s\n*, time_now )};
fprintf( £p, °"Finished at %¥s\n", time_now ):
fclosel fp ):

wait_for_SPACE( "Press SPACE to exit.” );

7

A.2. Sample Output of the Exhaustive Search

This is a shortened version of the actual file that is included on the accompanied disk.



Memory Bank Assignment Exhaustive Search for l6-point radix-4 FFT
Copyright (&)

Started at Tue May 13 09:05:43 1997
99999

Last
Lasc
Last
Lasc
Last
Lasc
Lasc
Last
Last
Last
Last
Last
Last
Last
Last
Last
Lastc
Lasc
Last
Last
Last
Last
Lasc
Last
Last
Last
Lasc
Laszt
Laszt
Laszt
Last
Lasc
Last
Last
Last
Lasc
Last
Last
Last
Lasct
Last
Lasct
Last
Last
Last
Last
Last
Last
Last
Last
Last
Last
Last
Lasc
Last
Last
Lasc
Last
Last
Last
Last
Last
Last

L L [ L [ (T | O T (O T TS 1 O TS TR [N T}

o

Wy nnuwnnunnn

L I | (I (I | T L | T T T | T L | S T | T R L [ T TR [N I I [

33
32
31
31
31
31
31
31
31
31
31
31
31
31
31
29
22

26
26
26

NRONNNONNNNNNNNNNONNNNNNNMNNNIVNNN

rrent
Currentc
Current
Current
Current
Currenc
Current
Currentc
Current
Current
Current
Current
Current
Current
Current
rent
Current
Currentc

Current
Current
Current

Current
Current
Current
Current
Current
Current
Current
Curzrent
Current
Current
Current

rrent

Current

Current

rrent
Current
Current
Current
Current
Current

rrent
Current
Current
Current
Currenc
Current
Current
Current
Current
Current
Current
Current
Current
Current
Current
Current
Current
Current
Current
Current
Current
Current

Finished at Thu May 15

L | | (I ([ | [ [ T 1 1 1 1 O 1 IO

L L {1 T ¢ O 1 [ T [ I 1} n L LI L T T L T [ I T T T} nohon
NNNNNMNNNNNNONONDNNNNNONUNNONRNNNNNNN

Londi L L I L I | {1 T T I T I [

5:03:18 1997

Words
Words
Words
Words
Words
Words
Words
Words
Words
Words
Words
Words
Words
Words
Words
Words
Words
Weords

Words
Words
Words

Words
Words
Words
Words
Words
Words
Words
Words
Words
Worcés
Words
Words

Words

Words
Words
Words
Words
Words
Words
Words
Words
Words
Words
Words
Words
Words
Words
Words
Words
Words
wWords
Words
Words
Words
Words
Words
Words
Words
Words
words
Words
Words

LU L L T T T o T I T T T O T I

B WL W W W W W W W W W LW W W N

L} LU [ T T 1 T O T 1 T ] "
NNNNNNONNONODRODONNONNNNNNNNNNONRONOMNG W Waanina s s b s s [

L L L O L L L (I L (O (T T VT O T T T

Symbol
Symbol
Symbol
Symbol
Symbol
Symbol
Symbol
Symbol
Symbol
Symbol
Symbol
Symbol
Symbol
Symbol
Symbol
Symbol
Symbol
Symbol

"

LI L O L | | | T O L | O | O (I T JO T O T

1999 Amal Knailtash (akhailtash@spacebridge.com)

0000000C
gggoocolr
00000003
00000005
00000006
00000007
000000C3
0000000A
00060008
0000000C
0000000D
0000000E
0oco000F
00000011
00000012
00000013
00000032
00000033

00000136
060000253
0000033C

00000536
00000669
00000996
00000ASA
000060C33
000011CC
0000136C
000013CC
0000165A
00001669
000025AS
000033CC

0000SASA

99669665
99696996
996996689
99966996
99969669
99996996
99999669
AS555A5A
ASSSASAS
AS55A5AS5A
ASSAASAS
AASASASA
AASAASAS
AAASSASA
AAASASAS
AAAASASA
AAAAASAS
C33333CC
c3c3cC33
C3cc33ce
C3Cccee3s
C€c3333CC
cc33CC33
cc3c33ce
CC3CCC33
Cccc333CC
CCcCc3CC33
cccc33cC
CCCCCC33



B. Program to Generate the ILP Source File for Arbitrary FFT

The program is compiled using the Microsoft Visual C++ v5.0.

B.1. Program (GILP_FFT.C) for Generating Bank Assignment ILP, arbitrary FFT

#include <conio.h>
ginclude <math.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

*ILP Generator for radix-2 FFT\n"
“Capyright (¢) 1999 Amal Khailtash (akhailtash@spacebridge.com)\n\n*®;

char *Copyright

char "UsageMsg = °"Usage: GILP_FFT <number_of_points> <radix> <levels>\n-
e number_of_points : is the number of points in the FFT.\n*
- radix : is the FFT radix.\n*
. levels : is the number of levels in the graph.\n":

//#define DEZBUG

inz N, /* Number of poinzs */

/* Radix */

/" Levels */

/v Number cf memory banks */
/* Number of iceretions =/
/* Number of edges */

/* Number of symbols */

/7 v/

LG RO RSN ol ]

void print_header{ void )
{
printf( *STITLE Assignment of memory banks to variables\n®
" SOFFUPPER\n\n"
-""""""'.""'-'-'t'tf"""""""""'f'"""".""\n-
-+ Copyright (c) 1999 Amal Khailtash\n"
i (akhailtash@spacebridge.com)\n*
-""."""""""."""’Q"""""'f.""t"""'.'.'-"\n- ) -
printf( ** Sd-point radix-%d FFT with\n*
=+ %d levels and %<& memory banks\n", N, R, L, B ):

pwiﬂtS( R R T R AN T P T R T P T R T N T Y N N TN P T T T AN T RN TR T IR TSRS TSITITITOISTINOOCOT\
riatctco

"+ Incdices (sets)\a"

P T T T T T N N P T N T T R P P N T T T RN TN N T R P N T P E T R NN N A NP N AN T T T TR TTTTRFOINT\ @

“SZTS\n" )

printf( * I Iterration number / 0 * %d /\n°
= S Symbol / 0 * %d /\n"
* B Bit index / 0 * %d /\n"
* E Edge index / 0 * %d /\n*, I-1, S-1., R-1, E-1 );

princf( * :\n\n"
“ALIAS (I. J) :\n~-
“ALIAS (3, BI, BJ) :\n\n" }:
}

void princ_fft_data( void )
{
int 1, r, e:
/7 int *rwi;
// wi = (int **)malloc{ I-"sizeof(int*") ):
1/ for( i=0: i<I; i+~ )
/77 wif[i] = (int *)malloc!( R*sizeof(int*) ):;

printf{ "SETS\n*

" WI(I, E) Writer's Iteraticn number\n /A\n” }:
for( i=0; i<I; ie~+ )
{
prianzf( * %2d. (=, 1):
for( r=0; r<R; re+ )

{
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e =31 "R~z
printf({ “%¥4c%s", e, r<R-1 2 *," : = }* }:

/17 wi[il(lr] = e:
}
princf( *\n* }:
}
rincf( - /\n* ):

#ifdef DEBUG
r7  for( is=G; i<I; ie+ }

I ¢
1/ for( r=0; r<R:; r+=+ )
/7 {
/7 printf( "wI(s2d. %24) = %24 *, i, r, wi{ilirl] ):
/7 }
/f princf( “\a" )
/ ¥
#endif
princf( * RI{J, E) Reader’'s Iteration number\n An® )
for( i=0; i<I; i-+ )
{
princzf( * %2c6. (", 1 }:
for{ r=0; r<R: z++ }
(

if ( i<(N/R) )
= i "R+~ r - E/2:;

(T/2) = = = 1 ~ (I/2):
{ ~%4d%s”, e, r<R-1 2 =, : = )" ):

}
printf( - /A\n* )
printf( = BW(3I, E) Writer's bit number\n /\n® )
for{ i=0; i<R; i+~ )
{
princf( - %2d. (*, i)
for({ r=0; r<2*R; r+- )
{

3
printi( - /\n* );
princé( = BR(BJ, E) Reader's bit number\n /\n" )
for{ i=0; i<R; i+~ )
{
princf( - %2G. (*, ¥ ):
for( r=0; r<2*R; z+- )
{

i€ ( r<R })
e=1"R+r;
else
e =r *R + i;
printf( *“%4d%s", e, r<2*R-1 2 "," = " )" }):

}
princf({ *“\n" ):

}
princf( * /\n*
" EDGE_EXTS(E, I, J, BI, BJ) Edge exists\n”
s\n\n* )

/7 for( i=0; i<I; i+~ ) (
/7 free{ wili] ):

7/ printf( “Here\n" }; }
// free( wi );

¢t/ princf( "Here\n" );

}

void print_table( void )
(
int r, s. i, b:
char buf([l16]. sym([16]. str(2] = *?-;
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char *+*sym_tab;

int ~*sym_cosc., *banks, cosc:

sym_tab = (char **)malloc( S*sizeof{char **) )

for( s=0; s<S: s~++ )
sym_tab{s! = (char *)malloc( l6*sizeof{char

sym_cost = (int *)malloc( S*sizeof(int*) ):

banks = (int *)malloc( B*sizeof(intc*) }:
#ifdef DEBUG
rincE( "sd\n". S );
Zor( s$=0: s<S; s++ ) { fprintf( stderr, °“%d4d °,
for( s=0:; s<S: s=- ) printf{ * -=-——-> %s\n",
#endif

“* Given data (parameters, tables,

) )

s); strcpy( sym_cabis].

sym_ctab(s] )

=1234~

e R TN R N N P PP T P I T P T T A N AR P R P RN T T AN PPN P TN TSP T T TSR s N R T ER\

scalars}\n"

T R R T S N P P E N T P P R N T P R T T P N P I S R PN R PN TR TN TN PO TP R RTNL\ S

*TABLE\n"

= BITS(S. B) binary equivalents of symbol S\n-"

- S 4

rintf( = %34 ", s ):
itoa( s, buf, 38 );

> =0;
strepy( sym, " );
for( r=R-1; r>=0; r--)
{
1f ( r<(int)strlen(buf) )
(
princf( °“%c *, buff{i] ):

strl0] = buf(
strcat( sym,
iew:

} else (
princf( "0 L 1
strcac{ sym. "0" ):

}

}

strepy( sym_tabl(s],
¥4 princf( *

princf( “\n° ):

sym )
sym_cab{s] I}

s<S; s~- ) princf( *
“ PARAMETERS\n"
= SYM_COST(S) Cost of each symbol\n"

princf( - /° )
for( s=0; s<S:; s<*+ }
{
if ( s%8==0 ) princf(
printf( <*%4d=", s }):
for( b=0; b<B; b+~ )
banks[b] = 0:
for( r=R-1; r>=0; r--)
banks([sym_tab(s][zr] -
cost = 0;
for( b=0; b<B; b+~ )
cost += abs(banks(b}
cost /= B:
printf( "%d-°, cost );
iE ( s<§-1 ) prinzf{ <*," ):

O A B

- R/2):

}

princf( *\n \n* );

for( b=B-1; b>0; b-- )

", sym_tabis]

):

):

}



}

v \a\n* )
for( b=B-1: b>0;
princf( *

free( banks );

free( sym_cost );

for( s=0; S<S; S+= )
free( sym_tab{s]

free( sym_tab };

BANK_IS_%d(S.

) s

B} Is one for bank %d\n*, b, b );

b-~ }
BANK_IS_$d(S. B) = 1

$ (BITS(S. B) EQ %d) :\n", b, b ):

void princt_trailer( void )

(

D

inc

.~

princf(

-\n't'ttttt."'.".""""'""'t"'"""""""""""'.-.\n-

=+ Decision variables (variables)\n"

" T T PR I P N N N TN P N T P P N S P P T N S N I T NN E P C T P NP PR T NN T TN TR T\ @

“VARIABLES\n"

= W X(I, S) Write at iteration I is assigned symbal S\n~
= R_X(I, S} Read at iteration I is assigned symbol S\=z*
* W_SYM(S) Total number of each symbol for writes\n”

= R_SYM(S) Total number of each symbol for reads\n*

* W_SYMS Total write symbols\n”

* R_SYMS Total read symbols\n"

“ W_COST Cost of write symbols\n”

« R_COST Cost of reac symbols\n”

* COST Total cost\n*®

° s\n\n*

“BINARY VARIABLES W_X. R_X, W_SYM, R_SYM ;\n"
“INTEGER VARIABLES W_SYMS, R_SYMS ;\n\n"
“EDGE_EXTS(E, I, J, BI, BJ) = YES $ WI(I, E)
“BW(BI, E) $§ BR(BJ, E) :;\n\n"

P T T I T N T I R P T R RN T T T N P R P T N P T N P I T T T P T R R T T RN T NN TP I RN IR T T T TRT\

** Constraints & objective functiocn (Equations)\n*®

B P T N I N N P E P P N P T T P T R T S S P P RN P P P NN T T P PO T NN VT O PP F T TS w e T O\

S RI(J., E) $ ~

*EQUATIONS\n"
“ CONS1(I) Allow only one write symbol at iteration I\n"®
® CONS2(I) Allow only cne read symbol at iteration I\n*
= (CONS3a(S) Caiculate total number of each symbol for writes\n*®
- CONS3b(S) Calculate total number of each symbol for writes\n®
= (CONS4a(S) Calculate total number of each symbol for reads\n*®
= CONS4b(S) Calculate total number of each symbol for reads\n"
= CONSS Calculate total number of write symbols\n®
= CONS6 Calculate total number of read symbols\n"
* CONS7 Calculate cost of write symbols\n-"
* CONS8 Calculate cost of read symbols\n” );
for ( b=1; b<B; b+« )
printf( * CONS%cS%s (E, I. J, BI, BJ) Force the bit to be '%d' on *
*corresponding read of a write\n", b+8, (b==1?" ":""), b}~
rincf( = OBJECT Our objective (cost) function\n®
®  ;\n\n-*
“CONS1({I) .. SUM(S, W_X(I, S})) =E=1 :;\n"
*CONS2(I) .. SUM(S. R _X(I, S)) =E= 1 ;\n"
*CONS3a{(S) .. 8 * W_SYM(S) - SUM(I. wW_X(I, S)) =G= 0:\n"
"CONS3b(S) .. SUM(I., W_X(I., S)) - W_SYM(S) =G= 0:;:\n"
“CONS4a(S) .. 8 * R_SYM(S) - SUM(I. R_X(I, S)) =G= 0:;\n"
“CONS4b(S) .. SUM(I, R_X(I, S)) - R_SYM(S) =G= 0:\n"
“CONSS .. W_SYMS =E= SUM({S, W_SYM(S)) :\n"
“CONS6 .. R_SYMS =E= SUM(S, R_SYM(S)) :;\n"
*CONS7 .. W_COST =E= SUM((I. S). W_X(I, S) * SYM_COST(S)) :\n~
“CONSS8 .. R_COST =E= SUM((I. S). R X(I. S) * SYM_COST(S)} :\n\n" );
for( b=1l:; b<B; be+ )
{
princf( -CONS%d(E, I, J, BI, BJ) $ ( EDGE_EXTS(E, I, J, BI, 8J) } ..\n", b+8 );
printf( * SUM(S, W_X(I., S)~*BANK_IS_%d(S, BI)) =E= SUM(S, R._X(J, S)*"
*BANK_IS_%d(S, BJ)) :;\m\n*, b, b ):
}
princtf( "OBJECT .. COST =E= (W_SYMS + W_COST) + (R_SYMS + R_COST) ;\n\n"
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~r\n~
.I'I..'."""""""""""".""""""'""."'.'..'.'\n.
*MODEL Banks / ALL / :\n"
“OPTIONS LIMROW=10000, LIMCOL=100, RESLIM=90000000, ITERLIM=1000C00C :\nr"
"SOLVE Banks USING MIP MINIMIZING COST :\n* ):

}

void usage{ void )

{
fprintf( stderr, UsageMsg );
exiz( 1 ):

1

int maian( int argec, char <argv(] )
{
if { arge==1 ) {
fprintf{ stderr, “Number of points --> * }:
scanf( "%d-, &N ):
fprintf( stderr, °FFT Radix -—> " )
scanf( *"%d", &R }:
fprintf( stderr., “Number of levels --> " };
scanf( "%d4~, &L )
fprincf( stderr, -Memory Banks -—> " )
scanf( =%d-, &B ):
} else if (argc !'= 5) (

usagel()
} else {(
N = atoilargv(ll]l):
P = atoilargvi2]):
L = atoilargvi{3l):
B = atoi(argv(4]):
}
if (N t= (int)pow(R, L)) {
fprinctf( stderr, "Invalid numbers, impossible!\n*® ):
exit(l);

I = (N/R) *L;
=1~ R;

S = (int)pow( B, R }:
print_header():
print_ffc_daza():
print_table();
princ_trailex():

return 0;

1
1}

B.2. ILP Source (FFT_16_2.GMS) for 16-point radix-2 FFT, Two Memory Banks

STITLE Assignment of memory banks to variables
SOFFUPPER

X222 R R TR 2 2 XS S XSS 222222 22 A A X a0l dldldld il

* Copyright (c} 1999 Amal Khailtash

. {(akhailrash@spacebridge.com)

R R R T2 22 a2 2 22222 RS2 2 X222 A R A R4 A0 A Al Al d s A dd A s B2
* 16-point radix-4 FFT with

* 2 levels and 2 memory banks

P N Y T T T T N T TR R TP TR R P N N T S T I T I T TP I N IR RN TR T P T U T T IR OANNTETNSS

* Indices (sets}
EXZEEEEEEEREETETETTE Y s 2 X A S R AR R RS R AR 22 R0 2 ARl ddl il lidld i
SETS

I Iterration number

S Symbol

B Bit index

E Edge index

177/
15 /
37
31/

NSNS N
ocQoo

* ¢ ¢ 8

ALIAS (I, J} :
ALIAS (B, BI, BJ) :



WI(I, E} Writer's Iteration number
o. { c. 1, 2. 3
1. ( q, S, 6. 7))
2. { 8. g, 10, il )
3. ( 12, 13, 14, 15)
q. ( 16, 17, 18, 19 )
5. { 20, 21, 22, 23
6. { 24, 2S, 26, 27 )
7. ( 28, 29, 30, 31}
/
RT(J., E) Reader's Iteration number
/
0. { 16, 17, 18, 19
1. ( 20, 21, 22, 23)
2. ( 24, 25, 26, 27
3. ( 28, 25, 30, 31
4. ( 0, 4. 8, 12
5. ( 1. S. g, 13 )
6. ( 2. 6, 10, 14 )
7. 4 3. 7. 11X, 15}
/
BW(BI, E)} Writer's bit number
/
0. { o, 4, 8. 12, 16,
1. { 1. S. g, 13, 17,
2. { 2, 6, 10. 14, 1is8,
3. ( 3. 7. 11, 1s. 19,
/
BR(8J, E) Reader's bit number
/
0. ( o, 1. 2, 3, 16,
1. ( 4, S, 6, 7. 17.
2. ( 8. 9, 10, 11, 18,
3. ( 12, 13, 14, 15, 18,
/

EDGE_EXTS(E. I, J., BI, BJ) Edge exists

;

"l't'.'c"""'f"-".."""-I'."""'"l‘"i".I'

* Given data

TABLE

(parameters,

cables,

20,
21,
22,
23,

scalars)

-""'"-""'f’.'"'.v".""."r'f'-""Q"'f""'*""t"

8ITS(S. B) binary equivalents of symbol §

YoJauns Lo

[
[=}
HEPHPHHPMPFOOOOO0OO0OO0OO0OW

PARAMETERS

HIHRMOOOOKRKHIRIFPOOOON

HHOOHFROOHMHOOIHOOK

o0

HPOPFOrHOFOQIFOROFOM

SYM_COST(S) Cost of each symbol

/
0=2

/
BANK_IS_1(S, B)

;

.

’

1=1,
$=0,

BANK_IS_1({S, B) =

2=1,
10=0,

3=0,
11=1.

q
12

Is one for bank 1

nn

1 § (BITS(S. B) EQ 1)}

24,
25,
26,
27,

24,
25,
26,
27,

28
29
30
31

28

30
31

»N
0

TerTTRRY
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* Decisicn variables (variables)
[ E2 22222222222 R R 2 R 22 R A2 22 2 R X R 222 R 2 22 A A2 AR ARl lllldldldldd
VARIABLES
W_X(XI, $) Write ac iteration I is assigned symbol S
R_X(I, S) Read at iteracion I is assigned symbocl S
W_SYM(S) Total number of each symbol for writes
R_SYM(S) Total number of each symbol for reads
W_SYMS Total write symbeols

R_SYMS Tozal read symbols
wW_CQST Cost of write symbols
R_COST Cost of read symbols
CGST Total cosc

BINARY VARIABLES W_X. R_X, W_S¥M, R_SYM
INTEGER VARIABLES W_SYMS, R_SYMS :

EDGE_EXTS(E., I. J, BI, BJ) = YES $ WI(I, E) § RI(J., E) $§ BW(BI. E) $ BR(BJ., E) :

PR R R R AR EEERZEZ R 2R 2 R R R SRR 2R 22 R 2 A2 A ddl Al AR llll bl dld
* Constraints & objective function (Egquations}
"'t"'""-""'"-'f'."..""""'.'.'..'.'l"'"'I"'I"'I’"I
EQUATIONS
CONS1(I} allow only cne write symbol at iteration I
CONS2(I) Allow only one read symbol at iteration I
CONS3a{S) Calculate tctal number of each symbol for writes
CONS3ib{S}) Calculate total number of each symbol for writes
CONS4a{S) Calculate teotal number of each symbol for reads
CONS4b(S) Calculate total number of each symbol for reads

CONSS Calculate total number of write symbols
CONS6 Calculate total number of read symbols
CONS7 Calculate cost of write symbols

CONSS8 Calculate cost of read symbol

CONSS (E. I. J., BI, BJ) Force the bit to be 'l' on corresponding read of a write
0BJECT Cur cbjective (cost) function

CONS1(I) .. SUM(S, W_X(I, S)) =E= 1 ;

CONS2(I) .. SUM(S. R_X(I, 8)) =E= 1 ;

CONS3a(S) .. 8 * W_SYM(S) - SUM(I. W_X(I, S)) =G= 0;

CONS3b(S) .. SUM(I. W_X(I, S)) - W_SYM(S) =G= 0;

CONS4a(S) .. 8 * R_SYM(S) - SUM(I. R_X(I., S)) =G= 0:

CONS4D(S) .. SUM(I, R_X(I, S)) - R_SYM(S) =G= O0:

CONSS .. W_SYMS =E= SUM(S, W_SYM(S)) :

CONS€ .. R_SYMS =E= SUM(S, R_SYM(S))} :

CONS7 .. W_COST =E= SUM((I, S), W_X(I, S} = SYM_COST(S)} :
CONS8 .. R_COST =E= SUM((I, S), R X(I. S} * SYM_COST(S)) =

CONS9(E, I, J. BI, BJ) $ ( EDGE_EXTS(E, I, J, BI, 33) } ..
SUM(S, W_X(I., S)*BANK_IS_1(S. BI)) =E= SUM(S, R_X(J, S)*BANK_IS_1(S, BJ)) ;

C3JECT .. COST =E= (W_SYMS + W_COST) - (R_SYMS + R _COST) ;

R R R R R AR Z 2222 R R R R SRR 2 R A R X2 2 R A A Al Al Al sl l ol At dd

MODEL Banks / ALL / ;

OPTIONS LIMROW=10000, LIMCOL=100, RESLIM=90000000, ITERLIM=10000000 ;
SOLVE Banks USING MIP MINIMIZING COST -



C. Program to Generate FFT Twiddle Factors
The program is compiled using the Microsoft Visual C++ v5.0.

C.1. C Source Program TWIDDLE.C

#inciude <conio.h>
#include <mach.h>

#include <stéio.h>
#include <stdlib.h>

//#define DEBUG

char *Copyright = "Twiddle Factor VHEDL Generator for radix-2 FFT\n"

“Copyright (c) 1999 amal Khailtash (akhailtash@spacebridge.com)\a\n*";

"

char *UsageMsg “Usage: TWIDLDLE <n>\n*

n: rumber of FFT points (powexr of 2)\n-~:;
#define pi (acos(-1))

void usage( void )
{
£
e
}

princf( stderr, UsageMsg )}:
xit(

tC 1)
int main( intc arge, char *argv(] }
{

int k., n, m;

double w_real, w_imag:

int w_real_scaled, w_imag_scaled;
int “wr, “wi;

fprincf( stderr, Copyright ):;

if ( argc'!=2 )
usage() ;

n = atoi( argv(l] );
i€ { (loglnl/log(2)) '= (int){login}/log(2)) }
usage()

= malloc( @ * sizecf(inz) )
= malloc{ m * sizeof(int) )

.
v

w
for( k=0: k<m; ke+ )} {
w_real cos( 2*k*pi/n );
w_imag -sin( 2*k*pi/n ):

(int) (127 * w_real):;
(int) (127 ® w_imag):
w_real_scaled & OxFF;
w_imag_scaled & OxFF;

w_real_scaled
w_imag_scaled
wrikl]

L T LI (I T 1}

#:fdef DEBUG

princf( "%02d: w_r: $9.6f (%4d) (%02X)\tw_i: ¥9.6f (%4d) (%02X)\n-,

w_real, w_real_scaled, wrlk].
w_imag, w_imag_scaled, wil[k] ):;
#endif
}

princf( * —-—ecememmeeo — - .
\n* J);
printf( = -- Constant Twiddle Factors\n” };

printf( * ———cemmee e - ——— -
\n* )

printf( * type LockupTable is array(0 to %d) of std_logic_vector (7 downto 0):\n*, m-1i

)2
princtf( ° constant WR : LookupTable := (\n" );

k.



for({ k=0; k<m:; k++ )} (
if ( k%8==0 ) printf( -
rintf( “X\°%02X\**, wr(k]

if ( k<m-1

princf(

if { (kel)%8s=

}
}
princf( "\n

{

=)

}sAn\n® )
princf( * constant WI : LookupTable
for( k=0: k<m:

k-+ 1 {

i€ ( k%8==0 ) printf( -
princf( "A\"%02X\"", wi[k]
if

rintf( "\n

}

C.2. Sample Output of the Program for a 256-point FFT

Twiddle Factor VHDL Generator for radix-2 FFT
1999 Amal Khailtash (akhailcash@spacebridge.com)

Copyright (c)

~

* )

{ (k+1)%8==0 ) princf(

)r\n\n"® )

0 ) princf( =\

type LookupTablie is array(0 to 127) of std_logic_vector{7 downto 0);

constant WR

X=7F", X*7E", X"7E", X*7E",
X=7C=, X*78%, X*78°, X"7A",
X=75", X=74~, X*72°, X*71-,

LookupTable :=

X-69°, X"67°, X"66", X"64"

X-59-

, X=57", X*55", X*52*
, X"43-", X=41-, X"3E*
X=30=, X*2D*, X*2A", X*27°"
, X=i5-=, X*12°, X*OF*,
. X*"FD", X°FA", X"F7"

X"E8", X"E5-, X“E2", X°DF"

X*p0=-, X"CD®, X°Ca-",
X*BA", X"B7", X*B5", X°B2"
X-A—T.r XIASH' XUAZ-’
X977, X"95"., X°94-",
X-8B*, X"8A", X"89-,
X°84-, X"83-, X"83", X-82-,

Vs

constant WI

X*8B*, X"BA", X°89"
Xx*84-, X-83-, X-83°
X-81", X-82-, X-82-
X-84", X°85", X"85", X"86".
X*8B", X~8C-, X"8E", X"8F°,
X-97°, X*99-, X"9A~, X"SC-,
X*AT7", X"A9°, X"AB®, X"AE-",
X"BA®, X"BD", X"BF-, X~C2-,
X-p0-, X*D3", X°"D6~, X°D9-".

LookupTable :=

., X*FD*, X*"FA", X"F7"
, X"E5", X°"E2", X°DF"
X*p0=*, X°CD*, X"CA®", X*C7*
., X"B7", X*"B5", X"B2"
X*A7°, X"AS*, X"A2-,
X*97°, X<"95°, X-"94", x-92*

X*E8". X"EB“, X“"EE", X°Fl°*

S e e s

X*7E",
Xx=78",
X"6E",
X*60-,
X"4E",
X-39-,

xX~21-*

X-09-,
X°Fl~,
X*D9*",
x-cz2-,
X-AE",
X=9C-,
X-gr",
X"86~,
x-82-,

X"Fl-",
X-ps-~,
x-cz-,
X°AE",
Xx-sc-,
X*8F",
x-86-,

x-82~
Xx-82~
X 88"

X=92-,
X a0-,
xX-B2-",
X=C7-.
X°DF",
X"F7",

100

X*7D",
X-76~,
X"6B-,
X*SB".

X"49"

X°EB",
x~D3-~,
X*BD",
X"A9",
X=99°~,
x-8c-,
Xx=85"-,
X-82-,
X"83-",
X"8A~,
X"95"-.
X"AS*,
X*B7".,
X°CD",
X*ES~.

X"FD"



D. C Source File Used to Design a Hardware Address Generator
The program is compiled using the Microsoft Visual C++ v5.0.

D.1. C Source File ADDGEN.C

#include <corio.h>
¢include <math.h>

#include <stdarg.n>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define TEST_1

//8define TEST_2
//#define TEST_3
//78define TEST_4

#ifdef TEST_1l

# define SIZE (256+256)
tendif

#ifdef TEST_2

¢ define SIZE (256*256)
#endif

#ifdef TEST_3

# define SIZE (12)
#endif

#define FALSE (0==1)
tdefine TRUE (1l==1)

typedef unsigned char BYTE;

P SIGESREEEEE D RS S e £ 88 et
$#ifdef TEST_4

#tdefine SAMPLES 8

#define POWER { (double)logl0( {(double) SAMPLES) /1ogl0( (double}2.0})

#define SIZE SAMPLES

int addressl([SIZE*SIZE]:;
int address2({SIZE*SIZE}:
int address3(SIZE*SIZE]:
int address4[SIZE*SIZE];

nt address([SIZE]:
YTE add_bic([SIZE]:

[

#ifdef TEST_1
void gen_addressesl( void )

{
int %, y. 1, j. X. ¥:
i = 0;
for( Y=0; Y<65536; Y+=4096 ) // block height = 16 rows
{
for{ X=0: X<256; X-=16 ) 7/ block width = 16 columns
( .
for( i=0; i<qd; ie+ ) /7 do 4 times
{
for( y=0; y<4096; y+=512 ) // every 2nd line
{
for( x=(y/512)%2; x<l6; x+=2 ) // every 2nd pixel
{
124 printf( °“Y=sd\tx=%d\ci=%d\cy=%d\tx=%d", ¥, X, i, y. x );
address{j] = x - ¥y = X + ¥Y;
/r/ princf( "\tj=%d, add=%d\n*, j, address(j] ):
J":
/7 getch() ;

101



‘s

¥

#endif

#ifdef TEST_2
void gen_addresses2( void )
{
inTt X, y. 3. X, ¥:
ine randf} = {( 0, 0, 1, 0, 1, 1, 0, 0, C, O.

o]

j=0;
for( Y=0; Y<65536; Y-=4096 ) 17/
{
for( X=0; X<256:; X+=16 ) 124
{
for( y=0; y<4096; y-=256 )} ’/
{
for{ x=0; xX<16; X+= } ¥4
{
address[j] = rand[x]*x - y - X - ¥
o
}
}
}
}
}
#endif

{
int i;
for{ i=0; i<SIZE; ie~- )
{
1€ ( i%12==0 )
princf({ *%07d4:"., 1 };
1€ ( (2+1)8%(12+25)==0 ) (
¥4 priacf( "\n" ):
i€ ( getch()==27 ) break:;

}
priatf( -%64~, address{i] ):
}
printf( "\n"~ );
}

void get_address_bits( iat bit )
{

n 1.
a i

[V
(4]

o

3}

( 1=0; i<SIZE; i~~ )

~

add_biz[i] = (address{i} >> bit) & O0xl:;
}
}

int bits_equal({ int *bit, int last )
{

int i;

int equal;

*bit = add_bitc(0}:;
equal = TRUE;
for( i=l; i<last; i+~ )
{
if ( add_bit[i-1l]!'=add_bicli] ) (
*bic = -1:
equal = FALSE:;
break:
}
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return equal:

}

int halves_equal( int first, int last }

{
int i;
int equal;
equal = TRUE:
for( i=first; i<last; ie~ )
{
i€ ( add_bic([i]'=add_bit[lasc~i] ) (
equal = FALSE;
reak:;
}
}
return equal:
}
int halves_inverse( int first, Int last )
{

int i:
T inverse;

inverse = TRUE;
for( i=first; i<last; i++ )
(
if ( (add_bit(i} -« add_bit[last-il)ti=1l1 ) (
inverse = FALSE;
reax;
}
}

return inverse:

}
void semi_random_sequence( BYTE *list, int size, char T*mapping

{

int i, j. c:

// printf( *Semi-random Sequence...\n" );

mapping{0] = "\0°';
firstl = TRUE:;
c = C;
for( i=0; i<size; i+- ) (
if ( lisc({il==1 ) (
C-=;
17/ princf( "lisc[sdl=%d\n"~., i, lisclil] ):
i1f ( 'firstl ) strcatc( mapping, " -\n S I 4

first2 = TRUE:

for( j=0: j<(int) (loglO(size)}/logl0(2})
i1f ( 'firsct2 ) strcac{ mapping, "." )
sprintf{ buffer, "C{%dl", j ):
strcat( mapping, buffer ):
if ( (i & (0x1 << j))==0 ) strcac( mapping, """ }:
if ( first2 ) first2 = FALSE:;

e a

}
if ( firstl )} firstl = FALSE:
}
}
// princf( -%d\n*, c );

}

void synth_address( BYTE *list, int size., char *mapping )
{

int bic, last, m;
// int bit, equal, last:;

char new_mapping([10+*10241]:
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// printf( -Synch Address..-\n" ):
last = size:
do {(
if ( bits_equal{ &bit, last ) )
sprincf( mapping., "“%3&°. bit );
return.;
}
last /= 2:
} while( halves_equal( 0, last ) ):
/7 } while{ halves_equal{ 0. last ) && last>0 ):

(

if ( halves_inverse{ 0, last ) ) (

m = {int) (loglO(lasc)/logl0(2)1}:;
if ( halves_equal( 0. last/2 ) )

sprintf( mapping, “%sC[%dl", |(
} else {

synch_address( list, last. new_mapping ):

sprincf( mapping. "C[%d] xor (%s)*. m, new_mapping ):
}

{
lisc[0l==0)2"":"not *, m );

} eise {
semi_random_sequence{ list, last=2, new_mapping }:
/7 sprintf( mapping., "?22° }:

sprinctf( mapping., new_mapping };

b

/""ttco.t"tc"t"'t"."t'tt"rtb""'t"l"'w.tt".t."-'v'-""-."tt""'
.
""""""'."".""l'.'...'."'.I"""-"'.""'.""."""""".'"'.'/

void tracel char *s, ... )}
< & e

#ifdef _DEBUG

va_Ll.st args;

va_start( args, s ):
vprincf( s, args };
va_end( args ):
fendif
}

sifdef TEST_4
/""""Q"""'-""'t-'.""..'-"""'..'."""""."""v"'""""""
* Bit reverse the number
* Change 11100000b to 0000011l1lb or vice-versa
'--""".""""""'--"-'I'"'"'Q""'-.""'."t-.-"r"""""""""/
int permute( int index )
{
int nl, resul:s, loop:

nl = SAMPLES;
result = 0;

for( loop=0: l10op<POWER: loop=-~ )
(
nl >>= 1; /= ni / 2.0 */
if (index < nl)
continue;

result += (int)pow( (double)2.0, (double)locp };
index -= nl;
}

return resulc:
}

/""-""t".'"-".""""""'."""-""""0""'."'t""t""""'t't'
.
'"""'""'"""""""""""""'"'..'.'.'f"""f"."".-'-""""'/

void ffc_dif ()

{

int 1, i, j. k:
int m, n, o, p:
int X:

7/ double w;
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/¢’ cGouble zl, wl, 22, w2:
x = 0;
m = SAMPLES / 2;
n=1;
for( 1=0; 1l<POWER; l+~ )}
{
o = 0:
p = m:
for( i=0; i<n; i+~ }
{
for( j=o: ji<p: j+- )
{
k = (j - o} * permuce(m):
i€ ( l<POWER-~1 )
{
addressi(x] = j:
address2[x] = j+m:
address3([x] = Jj:
address4{x] = Jem:s
trace( “%d: (%3 %) -> (%4 %&iI\n", k. j. j-m,
} else (
addressl[x] = 3j:
address2(x] = j-m:;
address3{x! = permute(jl:
address4 [x] = permute(j-m);
crace( *%d: (%d %¥d) ->
}
X+
}
crace( “\n* ):
o -= {m * 2);
p += (m * 2);
}
m /= 2;
n == 2;
}
}
tendif
at main( int argc. char rargvll]

char transform{1024];

#ifdef TEST_1
gen_addressesl();
i rinc_addresses() ;
for( 1=0; i<l6; i~+ )
{
get_address_bits( i };
synth_address( add_bic, SIZ2E,

printf( ° ‘%s°
}
rincfl *\n* ):
#endif

#ifdes TEST_2
gen_addresses2 ()
for( i=0; i<i6: i++ )

gec_address_bits( i };
synch_address( add_bic, SIZE,

rint&( * '%$s° \t==> adbic
}
princf( =\n" )
#endif

#ifdef TEST.3
address([ 0!
address{ 4]
address[ 81

0; address{ 1]
0; address{ 5]
0: addressi 9]

[I T}
wnn

ctransform ):
c==> adbhit %d\n-,

transform ):
td\n".

2; address|[ 2]
2: address( 6]
2; address[10}
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transform,

cransform,

i

i

1;
4;
4;

)

j. Jem ):

address[ 3]
addressi 7]
address({11]

nnn
o Oy W

v sy N

(%¢ %é)\n", k. j. i+m, permute(j). pexrmute(j-m)

)



or( i=0; 1i<3; i-- )

—~

gec_address_bits( i };
synth_address( add_bit, B, transform }:

princi( -~ ‘%5’ \c==> adbit %&\n-, ctransform. I );
}
#endif
sifdef TEST_A4
T T et b il
f€x_Gif )
// printf( "-\n" ):
for( i=0; 1i<SAMPLES; i<~ )
address(i] = addressl[il]:
7/ ringf( *“==-\n" };
for( i=0: i<16; i-+ )
{
get_address_bits{ i ):
/7 zincE({ "---\n" }:
synth_address{ add_pit. SIZE, transform }:
prinzfi - ‘%§s° \r==> adbit %G\n", transform. i }:

recurn 0;

}

D.2. Sample #1
‘C[31° ==> adbit 0
‘C[Cl" ==> adbic 1
*C{l}" ==> adbit 2
C2i- ==> adpit 3
*cs]” ==> adbit 4
*C[9]" ==> adbit S
*C(1CY - ==> adbit €
‘Cf11l ==> adbit 7
'Q ==> adbict 8
*C(3}]- ==> adbit 9
'Cr4a]: ==> adbit 10
*C[S!: ==> adbitc 11
‘Ccr2]- ==> adbit 12
*C[131’ ==> adbit 13
‘Cc(14]" ==> adbit 14
*C[15]" ==> adbit 15

D.2. Sample #2

'c[c:.clri~.crri.c(3r~ -
c(oj.c(irj~.cr2r.ci3] -
clol.cfi].cr2l.c(3iy- ==> adbic 0
‘c[or~.cril.creyi~.c(ij~ -
c(ol~.c{ij.c[21~.c(31 ~
cf{o}.Ccti}.crz2yj.cis}- ==> adbit 1
‘Ccro}j~.crii~.cr2y.ci3r” -
c[ol.crir~.cf2y.c(3j~ ~
cgoi~.crri~.cfz2j.cla] «
c[o).clij~.c(21.c3] -
cro].cli}.cr2y.cf3l ==> adbit 2
'c(0l1~.Ccri}.cr21~.c(3] «
cfal~.cf{irj~.cfa21.ci3j -
cfoj.cfil~.crz2).cf3jy -

c(o}.cliy.cg2j.cq3l: ==> adbit 3
M ==> adbit 4
*C(8]- ==> adbit 5
‘Cfi0} " ==> adbit 6
‘Criy)e ==> adbit 7
*C(4] ==> adbit 8
‘c(51° ==> adbit 9
’C[Gl' ==> adbit 10
CL71e ==> adbit 11
*cli2] ==> adbit 12
‘C[13])" ==> adbit 13
Cc(14]1 ==> adbit 14
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‘cis1"

D.2. Sample #3
‘clo}~.cfiy.crz21~ «
clel.c(1j.cf21~"
‘clo} -

‘c[o]j~.cf11.c(2] ~

c[o).clij.crz2j*

D.2. Sample #4

"cro} ==
*C(0]~.Cl1].C{2]~ ~

cro].crir.cr21=
c(o1~.Ccliy.cr2}
cfol.cril.cra1’

e s e e e e e e = e s .
CO0O00D0O0O00CO0O0O00

-

nn
v

==>

H I}
i |
v v

"
VVVVVYVY

vvvyvy

| T I T | O T T O T T (I I [

onnnnh lV| I T T T

v

==> adbit 15

adbitc
adbic

adbit

adbic
adbit

adbic
adbic
adbiz
adbic
adbit
adbic
adbit
adbitc
adbic
adbit
adbic
adbic
adbitc
adbitc

WO~V WN

10

12
13
14
1S
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D. VHDL Source Files for 1024-point Complex FFT

-- Acthor Amal Khailtash
1024-point Complex FFT

-- Copyright 1999 (c) Amal Khailtash

-- This is a public domain code. You may use or modify it as long as you
-- mention my name as the original author.

-— T MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE USE OF THIS CODE, EITHER
-- EXPRESSED OR IMPLIED. I ALSO TAKE NO RESPONSIBILITY OF ANY DAMAGES, THE USE
-- OF THIS CODE MAY CAUSE.

D.1. FFT Component Hierarchy

+~- CFFT1024
i
-- addrgen_bitrev

]
]

addrgen_linear

bucterfly

[

-- mult

P

| +- reg_pipe_single
!

-~ reg_pipe

—f —
'

coatroller

+- reg_pipe_single

mem_bank

skew_buffer

e § e f

4
¢

twiddle_factors

D.2. addrgen_bitrev.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arich.all;
use ieee.std_logic_unsigned.all;

entity addrgen_bictrev is
generic ( WIDTH : positive ):

porc |
reset_n : in std_logic:;
clock : in std_logic:
enable : in std_logic:
addr : out std_logic_vector(WIDTH-1 downto 0)

):
end entity addrgen_bitrev;

architecture rtl of addrgen_bitrev is

-- - Registered Signals
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sigral addr_int : std_logic_vector (WIDTH-1 downto 0):

begin

-- * Combinational Assignments

PR T I 2 22 22T L R R R A A A A R A A B A A A A i i il

P T2 T R T L R RSS2 RS R R A R A A A B AT A R A Al

g_bit_rev: for i in addr_int'range generate

addér(i}) <= addr_int(addr'length-i-1)~:
end generate:;

(R T 2 2 2 2222 R E RS A A A A A A A A A A At iR

sync: process( reset_n, clock )}
begin
if ( reset_n='0° ) then
addr_int <= (others=>'0"}):
elsif ( rising_edge(clock) ) then
if ( enable=°'1l' ) then
addr_int <= addr_int -~ °"1°;
excd if&;
enc iI;
end process Sync;

v b

end architecture rtl:;

D.3. addrgen_linear.vhd

P P P N P P T T R AT N P I T EE TN AR TP P RITTFITTITRTRTITES

TR T P R T T PP PP T TR CTOTRNTTRTNE

srwersewnevrw

T rTrTTIART TR TR TIIYFOCOSISRTIRNTIETTTIRTY

srweeresrEw

library ieee:

use ieee.std_logic_ll64.all:
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all:

entity addrgen_linear is
generic ( WIDTH : positive );

port |
reset_n : in std_logic:
clock : in std_logic:
enable : in std_logic:

addr
)
end entity addrgen_linear;

"

architecture rtl of addrgen_linear is

out std_logic_vector (WIDTH-1 downto 0)

signal addr_int : std_logic_vector (WIDTE-1 downto 0);

begin

-- * Combinational Assignments

adér <= addr_int:

sync: process( reset_n, clock )
begin
if ( reset_n='0' ) then
addr_int <= (others=>'0°);
elsif ( rising_edge(clock) ) then
if ( enable=°'1l' ) then
addr_int <= addr_int - °*1°;
end if;
end if:
end process sync;

109

e 2 2222z e TR IR R R 2 S 2 A A A 4 4 A At At A i

PR e 22 2 22z R R A R 2 A S AL A A A A A A S A A A A AR Ah A h it

t"""'"'""""""""".""""""I'.""""'.""""""""""

"""""'""'."t""""Q"t""""""'""""""""""""t""'

sPerrTTTERSTSIRETTFTSTY

rTewessww

www.manaraa.com



(4
[

end architecture T

D.4. butterfly.vhd

lipbrary ieee;

use ieee.std_logic_li64.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all:

entity butterfly is

port |

resec_n : in stdé_logic;

ciock : in std_logic:

enable : in std_logic:

w_T : in std_logic_vector( 7 dowrto 0);
w_i : in stdé_logic_vector( 7 dowzto Q)
a_r : in std_logic_vecter(i5 downto G}
a_i : in std_logic_vector (1S downzo 0):
o_r : in sctd_logic_vecter(l1S downco 0):
b_i : in std_legic_vector (15 downzo 0}):
X_r : out std_logic_vector(l5 downto 0);
x_2i : out sté_logic_vectar(l5 downto 0);
y_r : out std_logic_vecror(l5 downto 0};
y_3i : out std_logic_vector(l5 downte 0)

):
end entity butterfly:

architecture rtl of butcerfly is

component reg_pipe

generic (
DEPTH : posicive;
WIDTH positive

1:

port (
resec_n : irn sté_logic:
clock : in std_logic;
enable : in std_logic;
i : i std_leogic_vector (WIDTH-1
c : cut std_iogic_vector (WIDTE-I

):
end component:

component multc
generic (

A_WIDTH : positive:
B_WIDTH : positive
s
port |
reset_n : in std_logic;
clock : in std_logic;
enable : in std_logic;
a : in std_logic_vector(A_WIDTH-1
b : in std_logic_vector (B_WIDTH-1
= : out

)
end component;

downeto 0);
cdownzo Q)

signal ar_plus_br : std_logic_vector(l6
signal ai_plus_bi : std_logic_vector(l6
signal ar_minus_br : std_logic_vector(1l6
signal ai_minus_bi : std_logic_vector(l6

downto
downto
downto
downito
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downto 0):
downto 0);
std_logic_vector ( (A_WIDTH-B_WIDTHE-1) downto 0)



signal p0 : std_logic_vecror(24 downto 0);
signal pl : std_logic_vector (24 downco 0):
signal p2 : std_logic_vector (24 downce O}
signal p3 : std_logic_vector(24 downto 0);

OO0 OO0

~

signal pO_minus_pl : std_logic_vector(25 downto
signal p2_plus_p3 : std_logic_vector(25 downto

LTI

signal w_r_del : std_logic_vecter( 7 downto 0);

signal w_i_del : std_logic_vector( 7 downto 0):
begin

-- The folliowing should be calcularted:

-- x_r = (a_xr = b_r):

-- x_i = (a_i ~ b_3):

-- y_r = la_x ~ b_r)*W_r(k) - (a_i - b_i)*wW_i(k)

-- y_r = (a_i - b_1)*"W_r(k) ~ (a_r - b_r)*w_i(k}

R R R R e R R R A A e e e A e R A A AR R R R AR R

-- * Ccmponent Instantiations
I Z A AR SR SRSl Al i sl AR AR A 2R AR AR ARl d Al R4 AR dd s ld sl l sl il l & dd
i_pipe0: reg_pipe

generic map( DEPTH=>9, WIDTH=>16 }

port mapl(

resec_n => reset_n,

clock => clock,

enabple => enable.

i 2> ar_plus_br (15 downto 0}.
o => x_r

)

i_pipel: reg_pipe
generic map( DEPTH=>9, WIDTE=>16 )
port map |

reset_n => reset_n,

clock => clock,

enable => enable,

i => ai_plus_bi(15 downte 0},
o => x_1

):

i_mulzsO: mult
generic map{( A_WIDTH=>17, B_WIDTH=>8 )

port map (
reset_n => reset_n,
clock => clock,
enable => enable,
a => ar_minus_pr.
B => w_r_del,
p => pC

)

i_mulcl: mult
generic map( A_WIDTH=>17, B_WIDTH=>8 )

port map{
resec_n => reset_n,
clock => clock,
enable => enable,
a => ai_minus_pi,
b => w_i_del,
P => pl

):

i_mulc2: mulc
generic map( A_WIDTH=>17, B_WIDTH=>8 )
port map(

resecT_n => reset_n,
clock => clock,
enable => enable,

a => ai_minus_bi,
b => w_r_del,
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)

i_mulcld: mulc
generic map( A_WIDTH=>17, B_WIDTH=>8 ]

port map(
reset_n => reset_n.
clock => clock.
enable => enable.
a => ar_minus_br,
b => w_i_del,
e} => p3

}:
—— I ZEZ RS S E R RS RN R RRR SR A S A R R A RS A X R 2L R RS R R R 22 A R A2 AR L Aldl sl d Rl Rt s a4
- -

P e R T R N I R R TR P N R TN T T T RS R N T T P I N T R T NN I T S T P N N T T T N T P TP N P IR P Ty R a e T oY

process( reset_n, clock )
negin
if£ ( resetr_n="0" )} chen
ar_plus_br (ochers=>"0")
ai_plus_bi {ochers=>'0"}
ar_minus_br (ochers=>'C"}
ai_minus_bi (acthers=>'0")
w_r_del (achers=>'0")
_i_del (others=>'0"}
)
}
)
}

AAAAAA
LU I T I T O 1 [ 1 1

A

w_21
pO_minus_pl (others=>'0"
p2_plus_p3 (others=>'0"
y_r (ochexrs=>"0"
y.i (ochers=>"0"
elsif ( rising_edge(clock) ) then
if ( enable='1l‘' ) then
ar_plus_br <= sxt( a o)
ai_plus_bi <= sxt( a_i, 17 } - sxt( b_i, 17

AANA

“w

ar_minus_br <= sxt( a
ai_minus_bi <= sxt( a_i, 17 ) - sxt( b_i, 17

w_r_del <
w_1i_del <

pO_minus_pl <= sxz( p0, 26) - sxt( pl, 26 )
p2_plus_p3 <= sxt( p2, 26) - sxz( p3, 26 )

y_ T <= pO_minus_pl(25 downto 10}:
y_1i <= p2_plus_p3 (25 downto 10}:
end if;
end if;
end process;

end architeccture rzl:

D.5. cfft1024.vhd

library ieee:

use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all:

entity cf£fti1024 is

port |

reset_n : in std_logic:

clock : in std_logic:

enable : in std_logic;

starc : in std_logic;

busy : out std_logic:

done : out std_logic;

data_in : in stcd_logic_vector( 7 downto 0);
data_out : out std_logic_vector(l5 downto 0)
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end entity cf£cl024;

architecture rtl of cf€cl024 is

~-- - Componenet Declarations

component addrgen _bitrev
: positive )

generic |(

port (
reset_n
clock
enable
addr

):

WIDTH

[RETERTIRTY

end component

in
in
in
out

std_logic:
std_logic:
std_logic;

std_logic_vector (WIDTH-1 downto 0)

addrgen_bitrev;

component addrgen_linear
WIDTE

generic (

porc (
resec_n
clock
erable
addr

)} s

T TR LI

end component

: positive

std_logic;
sté_logic:
std_logic:

std_logic_vector (WIDTH-1 downto 0)

):

addrgen_linear:;

compeonent butterfly

port (
resect_n

£ ﬁ

XOUM@
[ SR U
R IR ST SO S ST

< F ®
"

()]

):

P TR TR TR TR T T

end component

o

[Pr™

std_logic:

n std_logic:;

in std_logic:

i std_logic_vectar( 7
b std_logic_vectaor!{ 7
in std_logic_vectar(l5
in std_logic_vector(ls
in std_logic_vector(ls
in std_logic_vector(l5
cut std_logic_vecrtor(l5
out std_logic_vector(lS
out std_logic_vector (1S
out std_logic_vector(1l5
bucterfly:

componenz controller

porct
resec_n
clock
enable
starc
busy
done

engine_enable

)

k

bankOr_we
bank0i_we
banklr_we
bankli_we

enable_w_addrgen
enable_r_addrgen(
enable_r_addrgenl
select_r_addrgen

write_sel
read_sel
bank_sel
skew_enable

in

in

in

in

cut
out
out
out
out
out
out
out
out
out
out
out
out
outc
out
out

T T TR T T TR R R T T RN RN PR YRR T RN RN 1Y

CORETIRT)

end component controller;

component mem_bank
port {

clock
we :

w_addr in

in std_logic;
in std_logic:
std_logic_vector( 8 downto 0);

std_logic;
std_logic:
std_logic:;
std_logic:
sté_logic:
std_logic;
std_logic:

std_logic_vector(8 downto 0):

std_logic:
std_logic;
std_logic;
std_logic;
std_logic;
std_logic:
std_logic:
std_logic:;
std_logic:;
std_logic:

std_logic_vecror(l downto 0);

std_logic

downto
downcte
downto
downto
downto
downto
downto
downto
downto
downto
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w_din : in std_logic_vector{is downto C):
r_addr : in std_logic_vector{ 8 downto 0}):
r_dout : out std_logic_vector(l5 downto 0}

HE
end component mem_bank:

component skew_buffer

port |
reset_n : in std_logic;
clock : in std_logic:
enable : i std_logic:
dinC : in std_logic_vector(lS downto 0);
dinl : in std_logic_vector(1l5 downto 0}
douzoO : out std_logic_vecror(lS downto 0):
doutl : out std_logic_vector(l5 downto 0}

):
end component skew_buffer;

component twiddle_facrors

poret {
Kk : in scd_logic_vector(8 downto 0):
w_r : ourt std_logic_vector(?7 downtc 8):
w_i : out sté_logic_vector(7 downto 81}

}:
end component twiddle_factors:

signal k : std_logic_vector{( 8 downto 0)
signal engine_enable : std_logic;

signal w_r : std_logic_vectoxr( 7 downto Q]
signal w_3i : std_logic_vector( 7 downto 0)
signal a_r : std_logic_vecrtor (15 downto 0}
signal a_i : std_logic_vector(1l5 downto 0)
signal b_r : std_logic_veccor (1S downto 0)
signal b_i : std_logic_vector(l5 downte 0)
signal x_r : std_logic_vector (15 downto 0)
signal x_:3 : std_logic_vector (15 downto 0)
signal y_r : std_logic_vecror (15 downto 0)
signal y_1 : std_logic_vector (15 downto 0)
signal skew_enable : sté_logic;

signal daca_reall
signal data_reall
signal ta_imagl
signal data_imagl

TEETERTERT)

std_logic_vector{l5 downtao 0)
std_logic_vector{l5 downto 0)
std_logic_vecroxr{1l5 downto 0}
std_lagic_vector(l5 downto 0)

signal bankOr_we : std_logic:

signal bankOr_w_addr : std_logic_vector( 8 downto 0)
signal bankOr_w_din : std_logic_vector (15 downco 0)
signal bankOr_r_addr : std_logic_vector( 8 downto 0}
signal bankOr_r_dout : std_logic_vector(1l5 downto 0)
signal bankOi_we : std_logic;

signal bank0i_w_addr : std_leogic_vector( 8 downto 0)
signal bankOi_w_din : std_logic_vector(lS downto 0)
signal bankOi_r_addr : std_logic_vector( 8 downto @)
signal bankOi_r_dout : std_logic_vecteor(lS downto 0)
signal banklr_we : std_logic:

signal banklr_w_addr : std_logic_vector( 8 downte 0)
signal banklr_w_din : std_logic_vector(15 downto 0)
signal banklr_r_addr : std_logic_vecror( 8 downto Q)
signal banklr_r_ dout : std_logic_vector(l5 downto 0)

signal bankli_we
signal bankli_w_addr

std_logic;
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std_logic_vector(l5 downte 0):
std_logic_vector( 8 downco 0):
std_logic_vector(lS downto 0):

signal bankli_w_din
signal bankli_r_addr
signal bankii_r_ dout

CUNET AT

std_logic_vector( 8 downto 0):
std_logic:

signal write_address
signal enable_w_addrgen

std_logic_vector( 8 downto
std_logic_vector( 8 downto
std_logic_vector( 8 downto
std_logic;
std_logic;
std_logic:

signal read_address
signal read_addressO
signal read_addressl
signal enable_r_addrgen(
signal enable_r_addrgenl
signal select_r_addrgen

000
— v
TERTIRY)

P TR TE TR TR TY

std_logic;
std_logic;
std_logic_vector(l downto 0};

signal wrice_sel
signal read_sel
signal bank_sel

TR

begin

R R E R R R A2 A R R A2 2 AR R R R R R A A R R AL SRS 2 2 S AR RS2 2 2222 222222 d Rl il iild sl sl

-- * Component Instantiations

IR 2 R R R 2 222 22 R X R R R R R R RS2 2 22 22 A2 22222222 R R RS

write_addrgen: addrgen_bitrev
generic map( WIDTH=>9 )
port map(

resec_n => reset_n,

clock => clock.

enable => enable_ w_addrgen.
addr => write_address

):

read_addrgen_lin: addrgen_linear
generic map( WIDTH=>9 )
port map(

reset_n => reset_n,

clock => clock.

enable => enable_r_addrgenO.
addr => read_address(0

)z

read_addrgen_br: addrgen_bitrev
generic map{ WIDTH=>9 )

rt mapl

resec_n => reset_n,

clilock => clock,

enable => enable_r_addrgenl,
addr => read_addressl

):

engine: butterfly
port map |

reset_n => reset_n,
clock => clock,
enable => engine_enable,
w_r => wW_r,
w_1i => w_i,
a_r => a_r,
a_i => a_i,
b_r => b_r.
b_i => b_i.
x_T => x_r,.
x_1i => x_1.
y_r => y_ r,
)/__i => y_1

)

ffr_controller: controller

port map (
resec_n => reset_1.
clock => clock,
enable => enable,
start => stare,
busy => busy,
done => done,
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r_dout => bankli_r_dout
)z

twiddles: twiddle_factors
port map
-4 => Kk,
wW_r => w_r,
w_i => w_ 3
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-- * Combinational Assignments
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a_r <= bankOr_r_dout:;
a_i <= bank0i_r_dout:
b_r <= banklr_r_dout;
b_1i <= bankli_yr_dout:
pankOr_w_addr <= write_address:;
pank0:i_w_addr <= write_address:
bankir_w_addr <= write_address:
bankIi_w_addr <= write_address:
reacd_address <= read_address0 when ( select_r_addrgen='0' ) else

read_addressl:

bankOr_r_addr
bank0i_r_addr
banklr_r_addr <=
barkli_r_addr <=

<= read_address:
<= read_address:
read_address:
read_address:;

P R R R R Ry s R e R e e a2 P R R R R 2 S A R R A2 R A S R 0l
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process( reset_n, clock )
begin
i€ ( reset_n='0' )} then

pankCr_w_cin <= (others=>'0');
pankOi_w_din <= (others=>'0');
banklr_w_din <= (others=>'0"):
bankli_w_din <= (others=>'0"');

data_out <= (others=>°'0");
elsif ( rising_edge(clock) ) then
if ( enable='1' ) then
if ( write_sel='0' ) then
bankOr_w_din <= (zero8 & data_in)

bank0i_w_din <= (zero8 & data_in)

~ ve v wy

banklir_w_din <= (zerod & data_in

bankli_w_din <= (zero8 & data_in)
else

bankOr_w_din <= data_reall;

bank(0i_w_din <= data_imagQ:

banklr_w_din <= data_reall;

bankli_w_din

data_imagl:

end if;

(others=>°'0"};
) then

data_ouz <=
if ( read_sel='1l’
case bank_sel is
when "00° =>
data_out <= bankOr_r_dout:
when -01-° =>
data_out <=
when "10° =>
data_out <= banklr_r_dout;
when "11° =>
data_out <= bankli_r_dout:
when ochers => null;
end case;

bank0i_r_dout;

end if;
end if;
end if;
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end process:

ené architecture rtli:

D.6. controller.vhd

library ieee;

use ieee.std_logic_l1l64.all;
use ieee.std_logic_arich.all:;
use ieee.std_logic_unsigned.a

entity controller is

11
B9 R

port |
reset_n : in std_logic;
clock : in std_logic:
enable : in std_logic:
start - in std_logic;
Dusy - out scd_logic:
con : out std_logic:
engine_enable : out std_logics
k : out std_logic_vector (8 cdownto C):
bankOr_we : out std_logic:
bank0i_we : out std_logic:
banklr_we : out std_logic:
bankli_we = out scd_logic:
enable_w_addrgen : out std_logic;
enable_r_addrgen0 : out std_logic;
enable_r_addrgenl : out std_logic:
selecrt_r_addrgen : out std_logic:
write_sel : out stdéd_logic:
read_sel : out std_logic:;
bank_sel : out std_logic_vecrtor(l downto 0};
skew_enable : out std_logic

)
end eantity coatroller:

compconent reg_pipe_single
generic (
DEPTH : positive
)i

porc (
reset_n : in sté_logic:
clack : in std_logic;
enable : in std_logic:
i : in std_logic:
o : out std_logic

):
end component;

constanc N_POINTS

constant N_DATA

constant N_DATA_DIVZ2

constant NODES_PER_LEVEL
-- constant LEVELS

constant LEVELS

constant NODES

[TERTIETI

o o

ctype ControllerStateType is

integer := 1024:;
integer := N_POINTS*2;
integer := N_DATA/2;
integer := N_POINTS/2:;

: integer := log2 (N_POINTS):;
integer := :
integer := LEVELS*NODES_PER_LEVEL;

( IDLE,
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WR_DOR., WR_DOI, WR_DIR, WR_D1I,
START_PROCESS, PROCESS_NODE. FLUSH.
RD_DOR., RD_DOI, RD_DIR, RD_D1I,
DONE_PROCESS ) :

artribute syn_encoding of ControllerStateType : type is “onehct”;

signal ctrl_ps, ctrl_ns : ControllerStateType:;

attribute syn_state_machine of ctrl_ps : signal is ctrue;

signal enable_w_addrgen_intQ : sté_logic:
signal enable_w_addrgen_intl : std_logic:
signal enable _w_addrgen_intl_del : std_logic:
signal bank0Or_wel : std_logic:
signal bank0i_we0 : std_logic:
signal banklr_wel : std_logic:
sigrnal bankli_we0 : std_logic:

std_logic:;
sté_logicsr

signal bankOr_wel
signal bankJi_wel

signal bankir_wel sté_logic;
signal bankli_wel std_logic:

std_logic;
std_logic:

signal barkOr_wel_del
signal bank0i_wel_del

TR T

signal banklr_wel_del std_logic:
sigmal bankli_wel_del std_logic:
signal skew_enable_in : std_logic:

std_logic_vector (10 downto 0);
std_logic_vector{l2 downco 0):
std_logic_vector{ 3 downte Q)
std_logic:

signal data_count
signal node_count
signal flush_count
signal done_int

TR
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-- * Component Instantiations
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i_pipe_enable_w_addrgen: reg_pipe_single
generic map { DEPTH=>12 )
port map (

resec_n => reset_n,

clock => clock,

enable => enable,

i => enable_w_addrgen_inzl,

o => enable_w_addrgen_inti_del

i_pipe_bankOr_we: reg_pipe_single
generic map ( DEPTH=>12 )
port map (

resec_n => reset_n,

clock => clock,

enable => enable,

i => bankOr_wel,

o => bankOr_wel_del

):

i_pipe_bank0i_we: reg_pipe_single
generic map ( DEPTH=>12 )
port map (

reset_n => reset_n,

clock => clock,

enable => enable,

i => bank0i_wel,

o => bank0i_wel_del

)z
i_pipe_banklr_we: reg_pipe_single

gereric map ( DEPTH=>12 )
port map (
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reser_n => reset_n,

clock => clock,

enable => enable,

i => banklr_wel,

o => banklr_wel_del

):

i_pipe_bankli_we: reg_pipe_single
generic map ( DEPTH=>12 }
port map (

reset_n => resec_n,

clock => clock,

enable => enable,

i => bankli_wel,

o => bankli_wel_del

):

i_pipe_skew_enable: reg_pipe_single
generic map ( DEPTH=>10 )
port map (

resec_n => resec_n.

ciocck => clock,

enable => enable,

i => skew_enable_int,
o => skew_enable
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-- * Combinatcional Assignments
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busy <= '0' when( ctrl_ps=IDLE ) else '1l';

k <= shi( node_count(8 downto 0). node_countc(l2 downto 9) )
enable_w_addrgen <= enable_w_addrgen_:int0 or enable_w_addrgen_intl_del;
bankO0r_we <= bankOr_we0 or bankOr_wel_del;

bank0i_we <= bank0i_weQ or bank0i_wel_del;

banklr_we <= banklir_weQ or bankir_wel_del:

bankli_we <= bankli_we0 or bankli_wel_del:

P R R R R R A Y R R R R A R R S R A A SR 2222 A2 X222 0a il sl ddd
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sync: process( reset_n, clock )

begin
1% ( resect_n="0' ) then

deone_int <= '0’;

done <= *'0°;
data_count <= (others=>'0");
node_count <= (others=>'0");
Zlush_countc <= (others=>'0");
wrice_sel <= '0°;
bankOr_we0 <= ‘0
bank0i_we0 <= *0°';
banklr_weQ <= *Q’':
bankli_we0 <= *Q°';
bankOr_wel <= *0°';
bank0i_wel <= '0°';

banklr wel <= '0';
bankli_wel <= 'Q';

read_sel <= *'0';

bank_sel <= *°Q00";
engine_enable <= *'0°;
skew_enable_int <= *0°;
enable_w_addrgen_int0 <= *0°;
enable_w_addrgen_intl <= 'Q';
enable_r_addrgent <= *'Q0°';
enable_r_addrgenl <= '0°*;

select_r. addrgen <= *‘Q°*;



done <= done_int:;

<= IDLE;
rising_edge(clock) )

if ( enable="1' )} then
ctrl_ps <=
done_int <=
bank0Or_wel <=
bank0i_wel <=
banklr_we0 <=
bankli_we0 <=
bank0r_wel <=
bank0i_wel <=
bankir_wel <=
bankli_wel <=
read_sel <=
bank_sel <=

enable_w_addrgen_3int0 <=
enable_w_addrgen_intl <=

enable_r_addrgenl

case ctrl_ps is

when IDLE

when WR_DOR =>

when WR_DOI =>

when WR_D1R =>

when WR_D1I =>

=>

enable_r_addrgenQ <=
select_r_addrgen <=

data_counc
node_count
£lush_count

write_sel
bank(Or_we0
data_count

wrice_sel
bank0i_we0Q
data_count

<=

<=

then

ctrl_ns:

enable_w_addrgen_:int0

write_sel
banklr_wel
data_count

write_sel
bankli_weO
ta_count

enable_w_addrgen_int0 <

when START_PROCESS =>
write_sel <=
enable_r_addrgen( <=
enable_r_addrgenl <=
select_r_addrgen <=
node_count <=

engine_enable

skew_enable_int

end if;

when PROCESS_NODE =>
enable_w_addrgen_intl <=

bank0z_wel
bank0i_wel
banklr_wel
bankli_wel

A

A

A
nown
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1*;
‘0
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(others=>'0");
if ( ctrl_ns=PROCESS_NODE ) then

Dll;
lll;

<=
<=

<=
<=
<=
<=

v
vy
1
vy
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node_count <= node_count « °'1';

when FLUSH =>
flush_count <= flush_count -~ *1°;
if ( ccrl_ns=RD_DOR ) then

done_int <= *1';
engine_enable <= Q'
skew_enable_int <= '0°;
enable_r_addrgen0 <= ‘'0Q°’;
select_r_addrgen <= °"1°;
end if;
when RD_DOR =>
read_sel <= *'1°':
bark_sel <= “0C":
data_count <= data_count + °"1°;
enable_r_addrgenl <= °*1°';
when RD_DOI =>
reac_sel <= °*1°';
bank_sel <= "0l=~;
daza_counc <= gata_count - "1°;
when RD_DIR =>
read_sel <= "I1°';
bank_sel <= "10";
data_count <= data_count - ‘'l1°:
enable_r_addrgenl <= *'1';
when RD_D1I =>
read_sel <= *1°;
bank_sel <= *"1l1%;
data_ccunt <= data_count « '1°;

when DONE_PROCESS =>

when others =>
data_count <= {gthers=>°'0'):
ené case:

end
end if
end process symnc;

if;
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combin: process{ ctrl_ps, start, data_count, node_count, £lush_cocunt )}
begin
case ctrl_ps 1is
when IDLE =>

if ( scart='0' ) then
ctrl_ns <= IDLE;
else
cerl_ns <= WR_DOR:;
end if:

when WR_DOR => ctrl_ns <= WR_DOI:
when WR_DOI => ctrl_ns <= WR_DIR:
if ( data_count=N_DATA_DIV2-1 ) then
ccrl_ns <= WR_DIR:
else
ctrl_ns <= WR_DOR;
end if:
when WR_DIR => ctrl_ns <= WR_D1lI;
when WR_D1I =>
if ( data_count=N_DATA-1 ) then
ctrl_ns <= START_PROCESS:;
else
crtrli_ns <= WR_DI1R;
end if;

when START_PROCESS =>
ctrl_ns <= PROCESS_NODE;
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when PROCESS_NODE =>
if ( node_count=NODES-1 ) then
ctrl_ns <= FLUSH:
else
ctrl_ns <= PROCESS_NODE;
end if:;

when FLUSH =>
if ( £flush_count/="1100° ) then
ctrl_ns <= FLUSH:
else
ctri_ns <= RD_DOR:
end if:;

whenn RD_DOR => crtrl_ns <= RD_DOI;
whern RD_DOI =>

i€ ( data_count=N_DATA_DIV2-1 ) then

czrl_ns <= RD_DIR:

else
ctrl_ns <= RD_DOR;
end if:;

when RD_DIR => ctri_ns <= RD_DI1I:
when RD_D1I =>
if ( data_count=N_DATA-1 ) then
ctrl_ns <= DONE_PROCESS:
else
ctrl_ns <= RD_DIR:
end if;

when DONE_PROCESS =>
ccrl_ns <= IDLE;

when others => ctrl_ns <= IDLE:
end case;
end process combin;

end archiceczure rtl:

D.7. mem_bank.vhd

library ieee:

library synplify;

use ieee.std_logic_1164.all;

use ieee.std_logic_arich.all:;
use ieee.std_logic_unsigned.all;

use symplify.actributes.all;

encity mem_bank is

port ¢
cleck : in std_logic:
we : in std_logic:
w_addr : in std_logic_vector( 8 downto
w_din : in std_logic_vector(l5 downto
r_addr : in stéd_logic_vector( 8 downto
r_dout : ocut std_logic_vwveccor{l5 downito

)
end entity mem_bank:

architecture rtl of mem_bank is

0):
Qgj:

0):
0)

-- -~ Registered Signals

signal mem : MemType:
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attribute syn_ramscyle of mem : signal is *block_ram-":

signal r_addr_reqg : std_logic_vector(8 downto 0):

begin
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-- * Combinational Assignments
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r_dout <= mem( conv_integer(r_addr_reg) ):
- [ZE T EREERTERTREAEASEESZEA S AR A RS AR REE R RS R 2 S A N A A A AR Rdl i il il ddd il il AR AR S A

[ TRy A A R R R e R e S e R R e S R S R S 2RSSR R d ddd

Write: process( clock !
begin
:f ( rising_edge(clock) ) then
if ( we="1' )} then

mem( conv_integer(w_addr) ) <= w_din;
end if;

b

r_addr_reg <= r_addr;
end if;
end process Write:

encé architecture rtl:

D.8. muit.vhd

1i
1i
us
us
us

us

brary ieee;

brary synplify:

e ieee.std_logic_l164.all;

e ieee.std_logic_arith.ali;

e ieee.std_logic_unsigned.all:
use ieee.std_logic_signed.all;
e synplify.atcributes.all;

entity mult is

generic (

A_WIDTE : positive := 8;
B_WIDTH : positive := 8
)
porc |

in scd_logic;
in std_logic:;
in std_logic:

resec. n

0
=
2]
4]
~

a : in std_logic_vector(A_WIDTH-1 downto 0):
b : in std_logic_vector(B_WIDTH-1 downito 0);
p : out std_logic_vector((A_WIDTH-B_WIDTE-1) downto 0)

|

end enticy mult:

architecture rtl of mult is

-- - Componenet Declarations
component reg_pipe_single
generic (

DEPTH : positive
)

port (
resec_n : in std_logic;
clock : in std_logic:
enable : in std_logic;
i : in std_logic;
o : out std_logic

):
end component;
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-- - Constants & New Types
type PTYPE is array(B_WIDTH-1 downto 1) of std_logic_vector(A_WIDTH downito 0);
type ATYPE is array(B_WIDTH-1 downto 1) of std_logic_vector(A_WIDTH-1 downto 0):

: std._logic_vector(A_WIDTH~1 downto O}
signal pp : PTYPE:

ATYPE;
std_logic_vector(B_WIDTH~1 downto 1);

signal a_reg
signal b_reg

"woee

ignal ppl : sté_legic_vector(A_WIDTH downto
signal pp2 : std_logic_vector(A_WIDTE downtic
signal pp3 std_logic_vector (A_WIDTH downto
signal pp4 std_logic_vector (A_WIDTH downto
signal ppS std_logic_vector (A_WIDTH downto
signal pp6 std_logic_vector{A_WIDTH downto
signal pp7 : std_logic_vector (A_WIDTH downto

[ERTEETIET
[eN~NoNeNeNole]
— v~
A v my sy Se oy

begin
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-- = Component Instantiaticons
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i_bn: for i in B_WIDTH-1 downto 1 generate
i_b: reg_pipe_single
gerneric map ( DEPTH=>i )
port map ( reset_n=>reset_n, clock=>clock. enables>enable, i=>b(i), o=>b_reg(i} };
end generate;

-~ Calculate the final resulc
i_pC: reg_pipe_single
generic map ( DEPTH=>B_WIDTE-1 )
port map ( reset_n=>reset_n, clock=>clcck., enable=>enable, i=>pp0(0). o=>p(0) ):

i_pn: for i in B_WIDTH-2 downto 1l generate
i_pn: reg_pipe_single
generic map ( DEPTH=>B_WIDTH-1-i )}
port map | reset_n=>reset_n., clock=>clock, enable=>enable., i=>pp(i) (0}, o=>p(i) });
end generate;

e PP T P P RN E T N T T N T E NN AT R T N A T T AT P E T T IR P I N AT N T T TP P IO I T T ST FTREsR PO T Ry aene

-~ * Combinational Assignments
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p((A_WIDTH+B_WIDTH-1) downto B_WIDTH-1) <= pp (B_WIDTH-1) (A_WIDTH downto 0):

R A R sy e R 22 2 R R A 2 22 2 R 2 A 2 X A A A A A A2 S Al AR A AR A A A il A & it ihdd

- - '""'"""w'"'.-"".-"".""""""".""'t-vv-.t"t"""I't."".
process( reset_n, clock )
begin
if ( reset_n='0' ) then
a_reg <= (others=>(others=>'0"));
ppa <= (cthers=>'Q0"}:
PP <= (others=>(others=>'0')};
elsif ( rising_edge(clock) ) then
if ( enable='1"' ) then
for i in B_WIDTH-1 downto 2 loop
a_reg(i) <= a_reg(i-1):
eand loop:
a_regl(l) <= a;

-~ Calculate the first multiplication
for i in A_WIDTH-1 downte 0 loop

pp0 (i) <= a(i) and b(0);
end loop;

-~ Calculate the intermediate results
for 1 in 1 to B_WIDTH-1 loop
if i=1 then
if ( b_reg(i)=*1* ) then
ppii) <= (ppO(A_WIDTH-1) & ppO0(A_WIDTH-1) & ppO(A_WIDTH-1 downto 1)) +
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(a_reg (i) (A_WIDTHE-1) & a_reg(i)):
else
pp(i) <= pp0(A_WIDTE-1l) & ppO(A_WIDTHE-1l) & ppO(A_WIDTE-1l downto 1):
end if;
elsif ( i=(B_WIDTH-1) ) then
i€ ( b_reg{i)='1" ) then
pp(i) <= (pp(i-1) (A_WIDTHE) & pp(i-l)(A_WIDTH downto 1)) -
(a_reg (i) (A_WIDTH-1) & a_reg(i)):

else
pp(i) <= (pp(i-1)(A_WIDTH) & pp(i-1)} (A_WIDTH downto 1l)}:
end 1if;
elise

if ( b_reg(i)='1* ) then
pp(i) <= (pp(i-1)(A_WIDTH) & pp(i-1) (A_WIDTH downto 1)) =-
(a_reg(i) (A_WIDTH-1) & a_reg{i)):;

else
pp(i) <= (pp(i-1) (A_WIDTH) & pp{(i-1) (A_WIDTE downto 1)):
end if;
ené if;
end loop:
end 1if;

end if:;
end process;

end architecture rtl;

D.9. reg_pipe.vhd

library ieee:

use ieee.std_logic_1164.all:
use ieee.std_logic_arith.all:;
use ieee.std_logic_unsigned.all;

entity reg_pipe is
generic {

DEPTH : positive;
WIDTH : positive
)i
port (
reset_n : in std_logic:
clock = 1 std_logic;
enable : in std_logic:
i : in std_logic_vector (WIDTH-1 downto Q):
[ : out std_logic_vector (WIDTH-1 downto 0)
|
--begin

-- assert DEPTH>1 report "Test" severity ERROR:
-~ assert WIDTE>1 report *Test® severity ERROR;
end entity reg_pipe:

architecture rtl of reg_pipe is

-- - Registered Signals

- ———— o = - > - - - - - = -

signal reg : RegType:
begin

(A4S A2 S22 R 2 AR 242 R 22222 222 222222222282l d iRl il st el dlldaldlddd

-- = Combinational Assignments
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o <= reg(DEPTH-1):;
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process( reset_n., ciock )
begin
if ( reset_n='0' ) then

reg <= (others=>(others=>'0'));
elsif ( rising_edge{clock) ) then

if {( enable='1" } then
if ( DEPTH>1 ) then

for i in DEPTH-1 downto 1 loop

reg(i) <= reg(i-1l):
end loop:
end i£;
reg(0) <= i;
end if:
end if;
end process:;

end architecture rtl:

D.10. reg_pipe_single.vhd

P TP S P RS P T E I N T IR PP T TR N T IR P TRTIT ST STS AT TR TN
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library ieee:;

use ieee.std_logic_ilg4.all:

use ieee.std_logic_arich.all:
use ieee.std_logic_unsigned.all:

entity reg_pipe_single is
generic
DEPTE : positive

y:
port (
reset_n : in std_logic;
clcck : in std_logic:
enable : in std_logic:
i : in std_logic:
<] : out std_logic
):
--begin

-- assert ( DEPTH>1 ) report °"Test” severity ERROR;

end entivy reg_pipe_single;

arcnitecture rtl of reg_pipe_single is

-- * Combinational Assignments

o <= reg(DEPTHE-1);

process( reset_n, clock )

begin
if ( reset_n='0' ) then
reg <= (others=>'0'};

elsif ( rising_edge(clock) ) then

if ( enable="1' ) then
if ( DEPTH>1 ) then

reg <= reg(DEPTH-2 downto 0) & i:

else
reg(0) <= 1i;
end if;
end if:;
end if;
end process:
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end architecture rtl:

D.11. skew_buffer.vhd

library ieee:

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all:
use ieee.std_logic_unsigned.all;

entity skew_buffer is

pore |
reset_n : in std_logic:
clock : in sté_logic:

enable : in std_logic:

éin0 : in std_logic_vector(l5 downto 0):
cinl : in std_logic_veczor(l5 downreo 0):
dout0 : out std_logic_vector(l5 downto 0):
doucl : out std_logic_vector(l5 downco 0)

|3
end entity skew_buffer:

archirecture rtl of skew_buffer is

signal reg® : RegType:
signal regl : RegType:
signal reg2 : RegType:;
signal reg3 : RegType:
signal in_count : std_logic_vector(l downto Q)
signal in_count_del : std_logic_vector(l downco 0):

signal in_counz_del2 : sté_logic_vector(l downto 0)};

begin
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process ( reset_n, clock }

begin
if ( reset_n="'0' ) then
reg0 <= (others=>(others=>'0"')):;
regl <= (others=>(others=>"0'));
reg2 <= (others=>(others=>"0'})};
reg3 <= (others=>(others=>°0")};
in_count <= (others=>'0"');
in_count_del <= (others=>'0'};
in_count_del2 <= (ochers=>°0"):
dout0 <= (others=>'0"):;
doutl <= (others=>'0");

elsif ( rising_edge(clock) ) then
if ( enable='l' ) then
in_count <= in_count + 'l1°;
in_count_del <= in_count;
in_count_del2 <= in_count_del:

case in_count is

when ~00° => reg0(1l) <= dinl; reg0(0) <= din0:
when -Q1° => regl{l) <= dinl; regl(0) <= din0:
when *10° => reg2(1l) <= dinl; reg2(0) <= din0:
when others => reg3(l) <= dinl; regld(0) <= din0;
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end case;

case in_countc_del2 is

whenn “00- => doutl <= regl(
when “0l1- => doutl <= regl(
when *10- => doutl <= reg3(
when others => doutl <= reg3(

end case:
end if;
end if;
end process:;

end architecture rtl;

D.12. twiddle_factor.vhd
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1); doutO
0); doutO
1); doutO

AAA
{1 O T 1]

A

regQ(0);
regO(l);
reg2(0):
reg2(l):

library ieee;

uvse ieee.std_logic_:iif6d.all:

use ieee.std_logic_arich.all;
use ieee.std_logic_unsigned.all;

po
k : in std_logic_vector(8 downto 0):
w_r : out std_logic_vector (7 downto 0}
w_i : out std_logic_vector(7 downto 0)

end entity twiddle_factors:

architecture rtl of twiddle_factors is

type LookupTable is array(0 to Sil) of std_logic_vector (7 downto 0);

constant WR : LookupTable := (
X*7F", X*7E", X*7E", X°"7E", X"7E",
X*78", X*7E*, X*7E", X"7E-", X"7E-",
X-7E~, X"7E-, X"7E*, X"7E", X*7E".
X*7D", X-7D*, X*7D°, X"7D", X*7D",
X"7C*, X=7C*, X=7C-, X*7C*, X*71B",
X=7B*, X*"7B", X*7a", X*"7A", X"7A",

X=79-, X*79°, X*79-, X-78%, X-78",
X 77, X°77", X~77-, X°76*, X*76",
X*75", X*75°, X"74-, X*74", X°74",
X*72", X"72*, X*72~, X=71%, X*71-,
X"7G", X"6F°, X"6F", X"6E-, X"6E",
X"6C", X"6C", X"6C-, X"6B-, X"6B",
X"69*, X"69°, X"68", X"68", X"67",
X"66", X"65°, X-"65-, X"64°, X"64°,
X"62°, X°61°, X-61-, X"60-, X~60",
X"SE*, X"5D", X*5D-, X"5C-, X°5B",
X"59", X"59-, x-58-, Xx"58-, X°S7-,
X=55", X"54-, X="54-, X~S53~, X°S2-,
X~50", X"4F=, X"4F-, X"4E~, X"4E*,
X"4B*, X"4B", X“"4A"., X"49-, X"49-°,
X=46°, X"45", X-45-, X~44"~, X"43°,
X~41*, X"40-°, X-3F-, X"3F~, X"3E-",
X*3B*, X"3B", X"3A-, X-39-, X°39°,
X=36", X"35°, X"34-, X-"34", X"33°,
X"30°, X"2F-", X"2F-, X*2E-, X*2D",
X*2A°, X"2A", X-29-, X~28°, X"27°,
X"24%, X"24-, X"23", X=22-, X=21-,
X*1E", X"1E", X"1D-", X"1C*, X*1B",
X-18°, X°1i8", X"17-, X"16°, X°15°,
X-12-, X-11-, X-1li-, X-10-, X"OF-",
X=0C", X"0B*, X-0A*, X"O0A", X"09-,

X~06*, X°05-", Xx"04-, X*03-, X-03-",
X*00", X=00-, X°FF", X"FE", X°FD",
X~FA®", X"F9", X"F9", X*F8", X"F7°,

X*7E*, X"7E°,
X*7E*, X"7E",
X=7p*, X*7D",
X=7C*, X~7C*=,
X=7B", X*78°,
X*7A*, X°79",
X*78-, X=78°,
X=76*, X*75",
X=73", X°73-,
X*71-, X°70°",
X“6E", X"6D",
X"6A", X"6A",
X~67°, X"66",
X*63", X“63~,
X~5F*, X°SF-,
X"5B", X"SA".
X*S57°, X*S6",
X*52~, X"51-,
X°4D", Xx~4C-",
X748, X"47",
X~43+, X-42-,
X~3p-, X-°3D",
X-38~, X"37-,
X=32-, X-32-",
X=2C-, X=2C~,
X=27-, X"=26",
X~21=, X*20°,
X=1B", X"1A-,
X"14", X*14°,
X*0E", X*0D",
X-08*, x*07°,
Xx-c2-, x-o1-,
X*FD", X°"FC",
X"F6", X"F6-,
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x-7E"
X-7E"
X"7D"
x=7C*"
X-78*
Xx-79"
X°77"
X"75"
x-73~
X"70"
X*6D"
X"6a"
X"66"
x"62"
X"SE"
X*SA"
X°S5*"
X-51°
x-4C*
X"47"
X=41"
X-3c*

.
.
v
.
v
v
’
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
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X-8E",
X-88B-,
X-89-,
X-87".
X-85-,
X~84-,
X=83",
x=-82",
¥-82",
Y

constcant
X-00",
X*FA",
X"F4-",
X“EE",
X"E8",
X=E2°",
X*pCc-.,
X"D&",
X*DO-.
X Ca-,
X=*C5-,

X*8E",

X-CE",

X-9D",
X-9A-,
X~96-,
X=83-,

X~F2=,
X"EC",
X"ES*",
X~DF*",
X-pg-,
X-D4-",
X*CE",
X-cs8-,
X°C3-,
X*BD",
X“B8°,
X=83-,
X"AE",
X"AS".
X*AS5-,
X"Al°",
X-9D",
X=99-,
X=96",
X=92-,
X"8F~.
X-8D",
X"BA“,
X-88~,
x-86",
X-85"-,
X=84-.
X-83-,
Xx-82-,
Xx-82-,

WI : LookupTable :=

X-00-,
X"F9",
X*F3-,

X"FF*~,
X"F9-~,
X°F3-,
X*EC*~,
X*E6",
X*EQ",
X*DA",
X=D4-,
X=Ce",
X C9-,
X*C3-,
X"BE",
X*B9-,
X"B4-*,
X"AF~,
X"AA",
X~a6-.
X"Al-,
X=9D",
X"9Aa~.
X~96",
X=93-,
X=90-,
X-8D*",
X*8B",
X*8g-,
X-87-,
X-85-,
X~84-,
X-83-,
x-82-,
X-82-,
x-82-,
Xx-+82-,
Xx-82-,
X~B83-,
X-84-,
X-86",
X-87-,
X~89-,
X-8c-,
X*8E",

X°FE",
X"F8-,
X"F2-,
X"EC",
X°ES-.
X*DF*",
X*Dg",
X D4a",
X"CE",
X=C8-,
X*C3-~.
X"BD",
X"B8-,
X*B3",
X"RE",
X*AS",
X*AS5",
X*Al-,
X"9D".
X=99-~,
X-96-,
x-92-,
X"8F~,
X-8D",
X*8a-,
x-88-,
X-86",
X-85-,
X-84-,
X-83-,
X-82-,
X-82-",
x-82-,

(

X*FO",
X*EA",
X~E4",
X"DE*",
X~D8~.
X=Dp2-,
X=cc-,
X=Cc7~,
X*Cl-,
X*BC",
X*B7".
X=B2-",
X*"AD",
X=a8"~,
X*A4",
X“aA0",
X=9C",
X-98*~,
X=95-,
Xx-92-,
X-8F-,
X 8Cc-,
X=8a-,
x-8s-,
X-86",
X-84-~,
X=83~,
X-82-,
X=82-,
X~82~,

X*B4-,
X-85-~,

., X=86",

X-88-,
X"8A",
X*8D",
X"8F"~,

X"EF",
X~ES",
X*E3",
X°DD",
X-D7".
X-Dl-,
X=cc-,
X-ce-,
X*Cl-,
X"BB",
X=B6°,
X"Bl-~,
X*RC~,
X~A8"~,
X*aA3-,
X*9F",
X<g98*,
X-98-,
X=94-~,
X=91i-,
X~8e~,
X~8C~.
X~89-,
X*87"
X=86"
X“84-*
X-83-~
X=82-
X-82-,
X-82-,

« s s v
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X*90", X"91-, X*91-, X°92*, X"92-, X"92-, X-93-, Xx=93-,
X"94, X"94", X°94*, X"95", X°95-, X"96°, X"96°, X=96~,
X"97*, X*97", X"98*, X*98", X"99-, X"99-, X"9A°, X"9A".
X"9a*, X"9B*, X"9B*, X*9C", X°9C", X°9D", X"9D~, X"9E°",
X"9E", X-"9F°, X"9F-, X"A0~, X"A0-~, X°Al*, X"Al®, X"A2",
X*A2°*, X"A3", X"A3", X"A4", X"AS", X"AS". X"A6". X"A6",
X=A7~, X"A7", X"A8°, X"A8". X"A9*, X"AS°*, X"AA"., X"AB".
X*AB", X"AC", X"AC", X"AD", . X*AE", X"AF*, X"AF",
X“BO", X*Bl*, X°*Bl*, X*B2°", X"B2", X"B3*, X"B4-. X°B4-",

, X*"BS*, X*B6", X*B7", . X°B8*, X*B9~, X*B9-,

, X"BB*, X"BB*, X"BC®, X*BD", X"BD", X"BE", X"BF",

., X=CG<*, X-Ci-, X°Cl-, . X°C3*, X-C3*, X"C4-.
X*C5", X"C5", X*C6-, X°C7-, ., X°CB*, X-C9-, X*C9°,

, X"CB", X"CC". X*CC-, X°"CD", X"CE*, X°CE". X"CF-",.

, X*Di-", X*D1i", X"D2", X"D3", X*D4-, X"D4", X"D5°,

., X"D6°, X*D7-, X"D8", X°"D9-, X"D9", X°DA~, X"DB*,
X*DC*, X"DC-". X"DD", X"DE-", X"DF*, X"DF*®, X°E0", X"El-,
X*E2°, X"E2-, X"E3~, X"E4", X"ES-*, X"E5". X"E6-, X"E7°",
X"=8°, X"E8*, X"E9", X"EA", X"EB*, X"EC", X"EC", X"ED".
X*EE-, X"EF", X"EF", X*F0", X"F1-, X"F2*, X°"F3-, X*F3",
X"F4“, X*FS", X°"F6-, X"F6°, X*F7-", X"F8", X"F9-, X"FS9-.
X“FA*, X=FB-, X"FC-, X"Fp", X"FD", X°FE-, X*FF~, X~00°
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-- * Combinational Assignments
"""""I""‘".-""""""".."'t.'.."."""I"""‘I."'f..."""'
= WR( conv_integer(k) ):;

<= WR( conv_integer(k) }:

end architecture rtl;

D.13. Testbench “cfft1024_tb.vhd”

library ieee:

use ieee.std_logic_l164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all
use std.textio.all;

use ieee.std_logic_textic.all;

entity c££fcl024_cb is
end entity cf£f£rl1024_tb;

architeccure behavioral of cf£cl1024_tb is

component cf££cl024

porz (

reset_n : in std_logic;

clock : in std_logic:

enable - in std_logic:

start : in std_logic:

busy : out std_laogic;

done : out std_logic:

data_in : in std_logic_vector( 7 downto 0);
data_out : out std_logic_vector(l5 dewnto 0)

)z
end component cf£tl024;

component twiddle_£factors
port {
k : in std_logic_vector (8 downto 0):
: out std_logic_vector (7 downte 0);
out std_logic_vector(7 downto 0)

"

w_
W,

(Y

)
end component twiddle_factors:
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constant N_POINTS : integer := 1024;
constant N_DATA + incteger := N_POINTS*2-1;
coastant NODES_PER_LEVEL : integer := N_POINTS/2:
-- constant LEVELS : integer := log2 (N_POINTS) ;
constant LEVELS : inceger := 10;
constant ITERATIONS : integer := NODES_PER_LEVEL*LEVELS:
type MemType is array( 0 to 511 ) of std_logic_vector(lS downtc 0):

signal mem_bank0r : MemType:
signal mem_bank0i : MemType:
signal mem_banklr : MemType:;
signal mem_bankli : MemType:
-- - Procedures and Functions

signal reset_n : std_leogic;
signal clock : std_logic:
signal enable : std_leogic:
signal start : std_logic:
signal busy : std_logic:
signal done : std_logic;
signal data_in : sté_logic_vector( 7 cdownto 0):
signal data_out : std_logic_veccor(l5 downto 0):
begin

B R R e e X 2 2 R R A X R A RS R R 222 A S22 4222 Rl d s

-- * Component Iastantiazions
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wul:
port map
resec_n
clock
enable
start
busy
done
data_in
data_out

.

cffc1024
(

v

resec_n,
clock.
enable,
stare,
busy,
done,
data_in,
data_out

\4

[T 1

)
twiddles: twiddle_factors
port map

k =>
=>
=>

(TN

w—
w_
:

)
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-- * Combinational Assignments
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ClkGen: process
begin
reset_n <= ‘0', '1l' after 5 ns;
locp
clock <= °*0*, '1' after 1C ns:
wait for 20 ns:
end loop:;

end process ClkGen:
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ApplyStimulus: process
file input_vector
file input_vector
variable 1

ctext open read_mode 1is “source.cxt”;
text;

line;
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std_logic_vector( 7 downto 0):
sté_logic_vector( 7 downto G}
std_logic_vector(l0 downto 0);

variable d_real
variable d_imag
variable data_count

e o0

begin
data_counz := (others=>'0'):
enable <

= 'Q*;
start <= '0°;
data_in <= (others=>'0');
wait until rising_edge(clock);

enable <= '1°
starc <= 'l°

e v

wait until rising_edge(clock):
scart <= ‘0°:
file_open( input_vector, “source.txt”, read_mode )
while not endfile( inpur_vector ) loop
readliine{ input_vector, 1 };

read( 1, d_real }:
ca_in <= d_real;
wait until rising_edge(clock]);

readiine( input_vecror, 1 ):

read( 1. d_imag };

daza_in <= d_imag:

wair untcil rising_edge(clock);
end loop:

file_close( input_vector );
waic;
end process ApplyStimulus:;
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CaptureQucput: process

texc:

line:

: std_logic_vector(10 downto 0);

€ile output_vector :
variable 1 :
variable daca_count

begin
£ile_open( output_vector. “"result.txt”, write_mecde );
loop
wait until rising_edge({clock):
exic when done="1";
end loop:;

data_count := (others=>'0'};
while ( data_count/=N_DATA ) loop
wait until rising_edge(clock);
data_count := data_count + "l1°;
wrice( 1, data_out }:
write( 1, string* (* £*y ¥
hwrice( 1, data_out ):
write( 1, string " (~]*) ):
writeline( outrput_vector, 1 }:
end loop:
write( 1, data_out )
write( 1, scring* (" )y }):
hwrite( 1, data_out );
wrice( 1, scring ' {("1") ):
writeline( output_vector, 1 }:;

file_close( output_vector ):
wait;
end process CaptureQutput;

end architecture behavioral:
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